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Abstract
This paper investigates the interplay between information diffusion in social net-

works and its impact on financial markets with an agent based model (ABM). Agents
receive and exchange information about an observable stochastic component of the
dividend process of a risky asset à la Grossman and Stiglitz (1980). A small propor-
tion of the network has access to a private signal about the component, which can be
clean (information) or distorted (misinformation). Other agents are uninformed and
can receive information only from their peers. All agents are Bayesian in updating
their beliefs, but they are so in a behavioural way, so that in the construction of the
likelihood function, they replace true precision with an individual parameter which
depends on an endogenous and time evolving measure of the agent confidence in the
source of the information. We examine, by means of simulations, how information
diffuses in the network and provide a framework to account for delayed absorption of
shocks, that are not immediately priced as predicted by classical financial models. We
show the effect of the network topology on the resulting asset price and offer an inter-
pretation for excess volatility with respect to fundamentals, persistence amplification
and lepto-kurtosis of returns.
JEL Classification:D53; D82; D85; G12; G41

1 Introduction

The efficient-market hypothesis states that financial markets are efficient. Prices reflect all
publicly available information about an asset. If a new source of information becomes
available, investors will trade on it and push the price towards the new efficient level.
According to models with a representative Rational Agent as introduced in Muth (1961),
information should be readily available to agents when forming their expectations. This
implies that as soon as a new piece of information is released each market participant
should immediately incorporate it in its expectation formation process. It seems unlikely
however that everyone can access perfectly all sources of information and even more so
that all agents simultaneously and independently receive and process it. In this paper
we are going to build an agent based model with parsimonious relaxations to rational-
ity in two dimensions. We will introduce heterogenous access to information and allow

*This work has received funding from the European Union’s Horizon 2020 research and innovation pro-
gramme under the Marie Skłodowska-Curie grant agreement No 956107, “Economic Policy in Complex Envi-
ronments (EPOC)”.
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for delayed transmission news to some agents by explicitly modelling the social network
structure in which individuals are connected. These deviations from rationality for which
there is ample empirical evidence, will be enough to qualitatively reproduce stylized facts
of financial markets, that cannot be captured in a rational setting and that other models
of bounded rationality are able to match only by introducing zero intelligence or back-
ward looking individuals. In theory, anyone can process information, but the ability to
effectively process and analyze information varies greatly between individuals. An indi-
vidual’s ability to process information can be influenced by a variety of factors, including
their level of education, experience, cognitive abilities, and personal interests. For exam-
ple, someone with a background in finance may be better equipped to process and analyze
financial data than someone without this background. It seems therefore reasonable to
assume that individuals observing a certain signal or news, might form incorrect beliefs.
These beliefs can lead to misinformation about an asset being priced. If misinformation
about an asset is spread and believed by a large number of investors, it has the potential
to affect demand for the asset and thus its price. The drivers for information diffusion are
generally traditional media outlets and regulated disclosure. However, social networks,
particularly for retail investors, can play a role in diffusion because they enable individu-
als and organizations to quickly and easily share information with a large audience.

The literature provides multiple examples of inefficency of financial markets. Huber-
man and Regev (2001) show that stock prices of a company, CASI Pharmaceuticals did
not incorporate new information for five months. They point out that news was initially
released as a research article in the journal Nature, but investors reacted only when a Wall
Street Journal article reposted the findings of the original study. In other worlds, there
seems to be some room for asymmetry of information in financial market. A first possible
explanation for this asymmetry is simply that not all investors have access to information.
The implication of insider trading on financial markets has been analyzed theoretically by
Kyle (1985), Benabou and Laroque (1992) and Collin-Dufresne and Fos (2016). The main
findings are that the speed of incorporation of news into a financial market might vary
since access to private information gives incentive to manipulate the market. In practice
however insider trading is generally prohibited in many countries and therefore not a sat-
isfactory explanation. Another source of asymmetry can be represented by behavioural
components. In the Huberman and Regev (2001) case, even though information was pub-
licly available, some investors might lack the knowledge or the capacity to process it.
Dellavigna and Pollet (2009) offer evidence of limited attention by showing that investors
are less reactive to news on Fridays and show how to construct a strategy exploiting the
underreaction to information caused by limited attention. Another strand of research has
focused on the impact of misinformation. Clarke et al. (2021) show that fake news has a
direct impact on retail trading and prices.

The rest of the paper is structured as follows. Section 2 describes the model, focusing
on the two blocks that constitute the ABM, the financial market block and the information
diffusion block. Section 3 presents numerical simulations and results. Section 4 concludes.
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2 Model

2.1 The financial market

The market is based on Grossman and Stiglitz (1980). There is an economy with I con-
sumers, indexed by i = (1, 2, . . . ,I). Consumers are infinitely lived and at the beginning of
every period they receive the same endowment W0. They have the same utility over the
end of period wealth, given by

U(Wt) = −e−aWt , (1)

where a > 0 is the coefficient of risk aversion. In order to transfer wealth from the begin-
ning of the period to the end, there are two types of security: a risk-free and a risky asset.
We define by pt the price of the risky asset in a generic time t and normalize the price of the
risk-free asset to 1. In every period consumers decide how to allocate their initial endow-
ment, choosing between the two possible securities. At the end of the period they receive
profits based on their portfolio, and immediately consume their wealth. Given their par-
ticipation in the financial market, throughout the paper we will use interchangeably the
terms consumers, investor and agent. Defining Xi,t as the consumer’s demand of the risky
asset and Mi,t as the demand of the safe asset, the allocation choice is subject to the budget
constraint

ptXi,t +Mi,t = W0. (2)

The risk-free rate is R > 1 and the risky asset pays a stochastic payoff which is equal to a
dividend claim plus the future price of the asset

yt+1 = pt+1 + dt+1. (3)

The presence of the future price in the right-hand side of equation (3) ensures a positive
feedback mechanism of expectations. This is a well established feature of financial markets
and documented among others by Heemeijer et al. (2009) and a feature of our work absent
in the original Grossman and Stiglitz (1980) model and more recent works like that of
Gerotto, Pellizzari and Tolotti (2019). There are two stochastic components determining
the realization of future dividends

dt+1 = d+ θt+1 + εt+1, (4)

with εt+1 ∼ N (0, σ2
ε) being pure unobservable noise. The stochastic component θt+1 is a

partially observable component of dividends, and evolves according to

θt+1 = βθt + ηt+1, (5)

with β ∈ (0, 1), ηt+1 ∼ N (0, σ2
η) and εt+1 and ηt+1 being independent. This implies that

fundamentals regarding the risky asset are stochastic but that some information about
them is revealed in advance. However this information is not immediately incorporated
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in the asset price. The end of period t wealth for the ith consumer is given by

Wi,t = RMi,t + yt+1Xi,t = R(W0 − ptXi,t) + yt+1Xi,t. (6)

Agents optimize their end of period wealth, which given the normality of yt+1 is also
normal. The optimization problem is therefore given by

max
{Xi,t}

(
−exp

{
−aEi,t(Wi,t) +

a2

2
Vi,t(Wi,t)

})
. (7)

Using equation (6) and solving for the optimal choice of risky asset yields

Xi,t =
Ei,t(yt+1)−Rpt

aVi,t(yt+1)
. (8)

The subscript i in the expectation and the variance operator represents subjective expected
value and subjective variance for agent i. The t subscript in the operators indicates that
expectation and variance are conditioned at the beginning of time t, that is before the
realization of θt+1. We set net supply of outside share of the risky asset equal to 0 and
using the market clearing condition by equating supply to aggregate demand to obtain an
implicit pricing equation

I∑
i=1

Xi,t =
I∑

i=1

(
Ei,t(yt+1)−Rpt

Vi,t(yt+1)

)
= 0. (9)

All agents in the model are assumed to be forward-looking in evaluating the asset price.
They expect the asset price to be its fundamental value, which is determined by the present
discounted value of the stream of future dividends. This implies that in the model there is
only a minimal deviation from rationality, given by the asymmetry in information. This is
a crucial aspect and one of the main features that distinguish our paper from other promi-
nent works in the literature. Chiarella (1992), Brock and Hommes (1998) and Lux (1998)
among the others, focus on the coexistence of fundamentalists and some type of bound-
edly rational backward looking agent. We argue that the agents in our model are acting in
the optimal way given the information available and that if frictions were removed from
the information diffusion process, we would end back in the rational expectations setting.
When solving the forward-looking problem, agents in the model assume that other agents
behave identically. This assumption leads them to solve the problem as if they were the
representative agent. In other words, they consider the aggregate behavior of all agents to
be equivalent to their own individual behavior. With this assumption the pricing equation
is given by

pt = R−1Et (yt+1) , (10)

and solving by iterating forward, which is done in section (A) of the Appendix gives

pt =
d

r
+

Et(θt+1)

R− β
. (11)
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The first component of equation (11) is the usual discounted value of future expected div-
idends. The second component is specific of our model and imposed by the persistence of
the observable component of dividend θ. Intuitively shocks to this component have an im-
pact on the fundamentals that exponentially decays over time at rate β and need therefore
to be discounted in today’s price. Having an expression for pt allow us to compute (see
appendix (C) the conditional expectation

Et(pt+1 + dt+1) =
dR

r
+

REt(θt+1)

R− β
, (12)

and variance

Vt(pt+1 + dt+1) = σ2
ε + Vt(θt+1)

(
R

R− β

)2

. (13)

Hence we can rewrite (9) as

I∑
i=1

Xi,t =
I∑

i=1

 dR
r +

REi,t(θt+1)
R−β −Rpt

a

(
σ2
ε + Vi,t(θt+1)

(
R

R−β

)2)
 = 0, (14)

which clarifies that heterogeneity in beliefs is completely related to the component θt+1.
The next section is devoted to describe the mechanism for which agents receive informa-
tion about this component.

2.2 Information diffusion

Agents are socially connected and are organized in a network. Each agent represents a
node, and nodes are entirely characterized by beliefs regarding the observable component
of dividends θt+1. Given the structure of the process, conditional on information available
at time t

θt+1 ∼ N
(
βθt, σ

2
η

)
.

Therefore we model consumers with normally distributed beliefs. Beliefs are heteroge-
neous since the information set on which agents are conditioning, is agent specific and de-
termined by an endogenous process of information flowing in the network. In each time
step, agents have a prior normal distribution regarding this component1 which depends
on the agent’s type. There are three possible categories:

• Informed agents. These agents are able to perfectly observe the component before
its realization. One can think that this is due to agents having access to privileged
or inside information. We prefer to associate this choice with empirical evidence
provided by Huberman and Regev (2001) and Peng and Xiong (2006) supporting the
idea of different classes of investors. Some agents may possess knowledge to process

1Temporarily, we drop the i subscript for convenience, but the process described below is dependent on
each agents’ position in the network.
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domain specific information that other, generalists agent, may lack. For them we
have2

θt+1 ∼ N (θt+1, 0) .

• Misinformed agents. These agents imperfectly observe the component before its re-
alization, albeit being not aware of it. For them we have

θt+1 ∼ N (θt+1 + γt+1, 0) ,

with γt+1 ∼ N (µγ , σ
2
γ), and γt+1 being independent of both ηt+1 and εt+1. In the

literature there are two main interpretations of misinformation. Theoretically, the
focus has been on noise traders, with De Long et al. (1990) being one of the seminal
contributions in such framework. Why do individuals trade on noise? As Black
(1986) puts it, “One reason is that they like to do it. Another is that there is so much
noise around that they don’t know they are trading on noise. They think they are trading on
information.” In our case when µγ = 0, there is no systematic bias in the expectations
of these agents. On average they are correct, but they face some noise. The second
interpretation which in our model corresponds to µγ ̸= 0 is that these agents trade
on and diffuse fake news. In this context Clarke et al. (2021) show that investors are
not able to systematically detect fake news even though the reaction of the market is
discounted when compered to actual news.

• Uninformed agents. These agents do not observe the component at all, but are aware
of the auto-regressive structure and use the last information they have available in
taking conditional expectations for their prior

θt+1 ∼ N
(
βµP,t−1, σ

2
η

)
.

with µP,t−1 being their posterior mean regarding θt. The reason for the presence of
the posterior in place of the actual realization of θt is that uninformed agents are
never able to observe individually this components, but will only observe the full
dividend realization. The literature provides ample evidence that not all informa-
tion is immediately processed by investors upon release. The simplest explanation is
that of limited attention. Hirshleifer, Lim and Teoh (2009) finds that investor reaction
to earnings announcement is weaker in days in which there are multiple simultane-
ous news. On a similar note Dellavigna and Pollet (2009) show that investors take
more time to process news on Friday. Tetlock (2011) shows that investors overreact
to stale information, that is information that is similar to previous stories about the
same firm and Gilbert et al. (2012) demonstrate that this causes mis-pracing in the

2This is in a sense an abuse of notation as a Normal distribution with 0 variance is a degenerate distribution
with support at the single point θt+1, known Dirac’s delta function. However this notation is convenient since
it will allow us to model the evolution of beliefs of this category of agents in the general framework.
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market and are able to construct a profitable strategy exploiting this finding. More
recently Blankespoor, deHaan and Marinovic (2020) show that there seems to ex-
ist ”disclosure processing costs” for which disclosures are not public information as
usually defined, but can instead be a form of private information.

The network is static. All edges are exogenously determined and time-invariant. Edges
represent information flow between nodes. At the beginning of time t agents have normal
prior distribution according to their category. They then receive data in the form of ob-
serving node j prior mean if an edge exists between node i and node j. Based on this
information they update their beliefs in a Bayesian way. The usual assumption in normal
conjugate Bayesian updating is that of known true variance of the likelihood function as-
sociated with sampled data. In our case we incorporate a behavioral component in this
process, which refers to the evaluation of the precision or accuracy of the source of infor-
mation. When an agent is connected to another node in the network, we assume that they
construct an implicit variance evaluating the forecasting error of the node. Forecasting er-
ror is given as the squared difference between the last observable payoff and the payoff
prediction implied by source j, that is

FEj,t =

(
yt−1 −

dR

r
+

Rµj,t−1

R− β

)2

(15)

To map forecasting error to a comparable variance of the given source, agents multiply
their prior variance with the ratio between source j forecasting error and their own

σ2
j,t = σ2

0,t

FEj,t

FEi,t

that is, if they observe that node j has been more accurate then themselves they will
attach higher confidence in their beliefs. They then update their beliefs by a novel mech-
anism of, which is an extension of Bayes rule to the case of receiving information from K

different sources and given in the following proposition.

Proposition 1 (Bayesian Updating of Beliefs) Assume agents have a normal prior distribu-
tion with parameters (µ0, σ

2
0) and receive K new information µk, k = 1, 2 . . .K. Then agents

posterior distribution is normal, with posterior mean given by:

µP =

∑K
k=0

(
µk · [A]Ā−1

k

)
∑

[A]Ā−1
(16)

and posterior variance:

σ2
P =

∏K
j=0 σ

2
j∑

[A]Ā−1
(17)

where, A = {σ2
0, σ

2
1, σ

2
2, . . . σ

2
K}, Ā is the cardinality of set A. [A]J is the set of all distinct com-

binations of products of size J from set A. [A]Jk indicates the combination that does not include
σ2
k.
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If one takes for example K = 2 posterior parameters are given by

µP =
µ0σ

2
1σ

2
2 + µ1σ

2
0σ

2
2 + µ2σ

2
0σ

2
1

σ2
1σ

2
2 + σ2

0σ
2
2 + σ2

0σ
2
1

, σ2
P =

σ2
0σ

2
1σ

2
2

σ2
1σ

2
2 + σ2

0σ
2
2 + σ2

0σ
2
1

.

One can see then that the posterior mean is given to a weighted average of the prior
means the agent has access to. Moreover each weight given to the signals is equivalent
to the Kalman Gain (see Appendix (B) for a discussion. A similar mechanism can be seen
as a particular case of the naive updating proposed in Golub and Jackson (2010) where in
our case the weights associated to each source j are given by [A]Ā−1

j /
∑

[A]Ā−1. Moreover
the novelty of our approach is in that we are able to simultaneously derive the posterior
variance, that while of no importance in their paper, has a fundamental role in the current
work, given the risk averse behavior of our agents. Also different in our case is that the
information exchange happens only one time per time step, therefore avoiding any poten-
tial bias given by repeated information as is the case in DeMarzo, Vayanos and Zwiebel
(2003). Of particular interest are then the following situations.

1. An agent considers source k to be absolutely certain. Then in our model we have,
ϕk = 1 and

lim
σ2
k→0

µp = µk (18)

lim
σ2
k→0

σ2
p = 0 (19)

That is, when an agent uses only one source of information and is totally confident
in it, the posterior mean will be equal to the signal, with variance 0.

2. An agent completely disregards source k, corresponding to a situation in which ϕk =

0. Then

lim
σ2
k→+∞

µp =

∑K
k=0

(
µk · [B]Jk

)
∑

[B]B̄−1
(20)

lim
σ2
k→+∞

σ2
p =

∏K
j=0 σ

2
j∑

[B]B̄−1
(21)

where B = A \ σ2
k. When agents believe that a source of information is totally un-

reliable, their posterior mean and variance will be equal to omitting the source of
information.

2.3 Sequence of events

We summarize the model by offering a synthetic visualization of the sequence of events
taking place in each time step t in figure (1).
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Figure 1: Sequence of events

3 Numerical Simulations

We illustrate the dynamics of the model by numerical simulations. We divide the parame-
ters governing the model behavior into three categories.

Base parameters characterizing the financial market, which are kept constant at the
values shown in table (1) in all the scenarios of our analysis.

Table 1: Base Parameters of the Model

Parameter Symbol Value
Total Time Steps T 500
Number of Agents I 150
Gross Risk Free Rate R 1.01
Constant Component of Dividends d 1.1

Total time steps are sufficient to ensure that behaviors driven by initial conditions are
absorbed in the long run. The number of agents in the model is of relative importance
only when combined with network specific parameters. Gross risk free rate, and constant
component of dividends have an effect only on the level of the resulting price series but
not on the quantitative dynamics.

Variable parameters. They are related to the stochastic components of the model and
are key factors determining the information diffusion mechanism. Given their relevance
we explore their effect on the model for a wide range of values, indicated in table (2).
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Table 2: Variable Parameters of the Model

Parameter Symbol Range
Volatility of Shocks to the Observable Component of Dividends σ2

η [0.1, 2.0]

Mean of the Misinformation Parameter µγ [−1.0, 1.0]

Volatility of the Misinformation Parameter σ2
γ [0.1, 2.0]

Volatilty of the Unobservale Component of Dividends σ2
ε [0.1, 2.0]

Autocrrelation Coefficient of the Observable Component of Dividends β [0.05, 0.95]

Proportion of Informed Agents λ [0.01, 0.25]

Proportion of Misinformed Agents ξ [0.01, 0.25]

Network parameters. They are specific to the network topology and determines the
social structure the agents are embedded in. The analysis is conducted by exploring the
effect on the financial market of different structures.

3.1 Small World Network

The first network topology we use is the Watts and Strogatz (1998) Small World Network.
We generate the network by starting with a regular lattice of a given degree. We then
assign each node to one of the three categories introduced in section (2.2) according to
given proportions. Finally we rewire a fraction of edges randomly by a given probability
of rewiring, introducing long-distance connections in the network. The main features of
such a topology are local clustering, short-average path length and almost homogeneous
degree of connection across nodes. The network specific parameters are shown in table (3).

Table 3: Parameters of the Small World Network

Parameter Range
Network Density [0.01, 0.5]

Probability of Rewiring [0.1, 0.5]

In figure (2) we show key features of the model by using the average over thirty Monte-
carlo simulations with different stochastic seeds. In panel (a) we plot the network structure
used in the simulations. Agents position is randomly determined in the beginning on the
experiment and then kept fixed, in order to allow us to track each agent evolution in the
different simulations. In panel (b) we report the resulting price of the model and compare
it with a benchmark, which we label Representative Agent (RA) Informed price. This is the
price implied by having a representative informed agent or a market composed totally by
informed agents. Notably, the information diffusion mechanism, guided by the network
structure, induces a subtle amplification of volatility. Likewise, it amplifies persistence,
as evidenced by an auto-correlation coefficient of 0.83 in contrast to the RA setting’s 0.5.
This result is driven by the time it takes for shocks to flow into the network. The delay is
driven by both an exogenous and an endogenous motif. It is impossible to immediately
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absorb shocks for nodes without a direct edge to a source of information. These agents are
simply precluded real time access to information by the network structure. Agents hav-
ing this direct connection, should instead endogenously assess the quality and accuracy of
it, and only in the limiting case in which they trust it completely, will they immediately
incorporate innovations in their beliefs. To study the endogenous flow of information we
use panel (c) show a scatter plot of cumulative profits and average forecast error for each
agent. Uninformed agents are on average more accurate than the misinformed agents and,
maybe surprisingly, also of the informed ones. The reason is the presence of the positive
feedback between expectations and future prices we have mentioned. Both informed and
misinformed agents act in a dogmatic way not considering how other agents are behav-
ing. This approach leads them to be extremely accurate in forecasting dividends. They
however expect prices to always reflect the fundamental value, which is not necessarily
the case.In terms of accuracy it pays to be in the majority. Cumulative profits however
do not vary proportionally with accuracy. Informed agents are the one profiting the most,
followed by misinformed agents. In fact uninformed agents are losing money. The rea-
son can be pinpointed to the risk averse behavior of the investors, which is sparked by the
higher uncertainty faced by uninformed investors. Mathematically, the denominator in the
individual demand of such kind of investor, which is given by the variance of the future
expected payoff is always greater or equal to that of the other categories. This is because
the second term in equation (13) is exactly 0 for informed and misinformed agents, and can
be 0 for uninformed agents only in the limit when the idiosyncratic component of the div-
idend process has variance 0. That is, when the only source of variability of dividends is
given by the observable component θ, uninformed agents should realize who the informed
individuals are, and fully update their beliefs based on their information. Intuitively, unin-
formed individuals have to be more cautious since the need to take consideration that the
source from which they are obtaining information might not be accurate. Lastly we look
at the impact on returns. In panel (d) we use a Quantile-quantile (QQ) plot, to identify
the presence of fat tails. We compare the simulated quantiles with the theoretical quan-
tiles from a Normal distribution with the same mean and standard deviation of model’s
returns. There is evidence of lepotkurtosis and we confirm the finding by reporting the
kurtosis of the distribution, which is 0.8, in table (6). Panel (e) compares the return distri-
bution with the benchmark case of RA Informed agents. Consistent with our findings, the
simulated returns have higher mass around the average and fatter tails.
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Figure 2: Small World Network

Note: Data are obtained from 30 simulations with different stochastic seeds. Variable parameters
are: σ2

η = 0.8 , µγ = 0.0, σ2
γ = 1, σ2

ε = 1, β = 0.5, Proportion of Informed Agents = 0.1, Proportion
of Misinformed Agents = 0.1. Network parameters are: Network Density = 0.05, Probability of
Rewiring = 0.1.

3.2 Stochastic Block Network

We now explore the impact of different societies on the financial market. We repeat the
analysis by keeping fixed the variable parameters. This allow us to attribute changes in
the model dynamics entirely to the network structure. The first scenario we analyze is
a completely polarized society. We create it by using a Stochastic Block Model Holland,
Laskey and Leinhardt (1983), in which we partition the nodes in order to create two clus-
ters. Informed and misinformed agents are separated and assigned to either the informa-
tion block or the misinformation one. We denote by density of intra-groups edges, the
likelihood of having an edge between agents belonging to the same cluster. This is higher
than the density of inter-groups edges, regulating connections between agents belonging
to different blocks. Thus not only the network is partitioned, but communication between
the two groups is scarce. We report the network specific parameters in table (4).
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Table 4: Parameters of the Stochastic Block Network

Parameter Range
Number of Partitions 2

Density of Intra-Groups Edges [0.1]

Density of Inter-Groups Edges [0.001]

As before we simulate the model thirty times with different stochastic seeds. Results
are displayed in figure (3).

a

c d

b

e

Figure 3: Stochastic Block Network

Note: Data are obtained from 30 simulations with different stochastic seeds. Variable parameters are: σ2
η = 0.8

, µγ = 0.0, σ2
γ = 1, σ2

ε = 1, β = 0.5, Proportion of Informed Agents = 0.1, Proportion of Misinformed Agents
= 0.1. Network parameters are: Number of Partitions = 2, Density of Intra-Groups Edges = 0.1, Density of
Inter-Groups Edges = 0.001.

Panel (a) displays the network structure. Each cluster has similar characteristic to the
small world structure. Now however uninformed agents have a low chance of being ex-
posed to both information and misinformation. The effect of this segregation is readily
apparent in panel (c). Agents belonging to the information block have higher profits than
their counterparts in the misinformation block. In panel (b) we see that prices are still ex-
hibiting volatility and persistence amplification, with respect to the RA baseline and also
slightly with respect to the small world setting. In table (6) we quantify this effect. Panel
(d) and (e) show that Leptokurtosis is now more pronounced although the returns distri-
bution is qualitatively similar.
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3.3 Scale Free Network

Until now we have simulated societies in which agents have equal opportunities of sharing
their beliefs, given that the average degree was rather homogeneous across the network.
For our next scenarios we opt to work with societies in which certain individuals can have
a disproportionate impact on society. This concept is similar to the ”guru”, discussed in
Tedeschi, Iori and Gallegati (2012). Gurus are are agents that are most imitated by others
and can emerge endogenously in the market. The main difference is that in their model,
edges are created by a mechanism of preferential attachment based on wealth. Instead we
use an exogenous mechanism so by creating a directed3 Scale-Free Network Bollobás et al.
(2003) and forcefully allocating either informed or misinformed agents in the nodes with
most outward connections. The network specific parameters are reported in table (5)

Table 5: Parameters of the Scale Free Network

Parameter Range
Network Density [0.01, 0.5]

Probability of Rewiring [0.1, 0.5]

Note: For a detailed explanation of the parameters role we refer to page 2 of Benabou and Laroque (1992).

We begin by analyzing the case of informed agents being the most central. The network
topology is displayed in panel (a) of figure (4). Panel (b) shows that volatility amplification
is stronger with respect to the the previous undirected cases. Persistence amplification, as
reported in table (6) is lower, and the auto-correlation coefficient is 0.68. Panel (c) high-
lights that informed agents are benefiting from their prominent position in the society, and
are earning significantly more then in previous scenarios. Proof of their success in influ-
encing the market is that they are also more accurate in forecasting future payoff. This is
because the majority of the network has beliefs, that seems to be distributed around the
informed agents one. Errors and beliefs of uninformed agents are however extremely het-
erogeneous. This is due to many nodes not having a direct connection to the information
source, as a result of the scale free property of the network. These individuals are only
able to receive news about the observable component of dividends multiple periods after
the realization. Even so, it is still better for them to take stale news into consideration,
given the persistence of these shocks. This offers a potential explanation to the empirical
findings regarding stale information of Gilbert et al. (2012) and Tetlock (2011). The result
of this configuration on returns is that of less deviation from the benchmark case and less
accentuated leptokurtosis, as we can see in panel (d) and (e).

3It must be remarked that although until now we were using undirected networks, informed and misin-
formed agents were behaving in a dogmatic fashion. This is because a 0 prior variance in their beliefs implies
non updating or posterior beliefs exactly equal to the prior.
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Figure 4: Scale Free Network with Central Informed Agents

We then analyze the second scale free society, in which the most connected nodes are
misinformed agents. The network in panel (a) of figure (5) has the same configuration
of the previous and the only difference is in the position of agents. The price analysis
in panel (b) reveals that this configuration is the one producing the most volatility am-
plification, with the variance in the simulated model being more than double that of the
benchmark case. The series is persistent with an auto-correlation of 0.80, close to the one
in the undirected cases. Turning to the profit and accuracy analysis in panel (c) we can
see that misinformation has successfully spread into the network. Misinformed agents are
the ones with the highest profits and the magnitude of their earnings is more then 4 times
higher than in the previous cases. This comes at the expense of uninformed agents who are
now on average loosing twice as much as in the previous scenarios. Having in most case
connections only to misinformed individuals or other uniformed agents with stale misin-
formation makes their participation in the market extremely unfruitful. Panel (d) and (e)
confirms that returns are again extremely leptokurtic, with kurtosis of 0.79 as we can see
in table (6).
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Figure 5: Scale Free Network with Central Misinformed Agents

3.4 Discussion

We now summarize and discuss the results, by collecting important statistics in table (6).

Table 6: Summary of moments for different scenarios

Variance Autocorrelation Kurtosis
Small World 1.10 0.83 0.81
Stochastic Block Network 1.19 0.84 1.05
Scale Free Informed 1.46 0.68 0.44
Scale Free Misinformed 2.18 0.80 0.79
RA Informed 0.80 0.50 0.00

Contrary to the original Grossman and Stiglitz (1980) model and other works like Ben-
abou and Laroque (1992) in our model communication is individually optimal for two
reasons. Given the feedback mechanism, and the presence of misinformed traders, in-
formed individuals are better off revealing their information in the hope of dissuading a
larger share of the population to reflect incorrect beliefs into future prices. Moreover as
we can see in the case of the scale free networks, the more nodes exists without a direct
connection to an information source, the better. This is because when a node incorporate
information about the observable component of dividends at a later time, they will push
prices towards the direction in which the informed agent has already taken position. To
illustrate these point, we provide some analytical results for limiting cases of our model.
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We begin the analysis by showing that without misinformed agents the logic of Grossman
and Stiglitz (1980) holds.

Proposition 2 (Optimality of no communication) Assume that the network is fully connected,
with no misinformed agents and that uninformed agents prior variance is ∞4. Then informed
agents would earn higher profits by not communicating their beliefs.

However this argument holds only if every node in the network has a first degree
connection to an informed agents. If the network density is not high enough to ensure this
property, then it might become more profitable for informed agents to communicate their
beliefs. We formalize this in the following proposition.

Proposition 3 (Optimal communication of stale information) Assume that the network is
fully connected, with no misinformed agents and that uninformed agents prior variance is ∞.
Assume moreover that all but one uninformed agent are two edges away from an informed agent.
Then informed agents would earn higher profits by communicating their beliefs.

We then investigate what parameters are driving the results by Sobol sensitivity analy-
sis Sobol (2001), Saltelli (2002), Saltelli (2010) in section (E). We can see that the two param-
eters, the auto-correlation coefficient β and the standard deviation of the noise component
of the observable component of dividend ση are responsible for driving most of the dy-
namics. To further investigate their role we use contour plot to show the effect of these
two parameters on the moments of the resulting price series. For each combination of the
parameter in the range [0.1, 0.8] for β and [0.1, 0.5] for ση we show the difference between
the baseline fully information model and the corresponding simulation in figures ( 6) to
(9).

4Indeed this is an extreme and limiting case. It would imply however that the posterior mean of unin-
formed agents belief would be equal to the one of the informed agents

17



a

c

b

d

Figure 6: Effect of β and ση in the Small World Network
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Figure 7: Effect of β and ση in the Stochastic Block Model
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Figure 8: Effect of β and ση in the Scale Free Informed Network
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Figure 9: Effect of β and ση in the Scale Free Misinformed Network
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4 Conclusion

We have presented an agent based model of a financial market to study the interplay be-
tween information diffusion and market prices and returns. In this setting agents are con-
nected in a social network and can obtain information from their peers in order to form
more accurate forecasts of the underlying dividend process. We proposed a novel mech-
anism of expectation formation when agents have to evaluate multiple sources of news
simultaneously. This is based on Bayesian updating and provides an alternative to perfect
rationality, while imposing minimum departures from it. By means of numerical simula-
tions we examined the efficiency implications of multiple social network structures. We
demonstrated that empirical features of financial markets, such as excess volatility with
respect to fundamentals, persistence amplification and fat tails of returns are emergent be-
haviors of the system. These features are exacerbated in societies in which misinformed
agents occupy prominent positions.
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Appendix

A Forward Looking Price

pt = R−1Et (pt+1 + dt+1)

= R−1 [Et (pt+1) + Et (dt+1)]

= R−1
[
Et

(
R−1Et+1 (pt+2 + dt+2)

)
+ Et (dt+1)

]
= R−1Et(dt+1) +R−2Et(dt+2) +R−2Et(pt+2)

= R−1Et(dt+1) +R−2Et(dt+2) +R−2Et(R
−1Et+2 (pt+3 + dt+3))

...

=

T∑
j=1

R−jEt (dt+j) +R−TEt(pt+T ),

which implies, imposing limT→∞R−TEt(pt+T ) = 0 that in the limit T → ∞

pt =

∞∑
j=1

R−jEt (dt+j) .

Now we focus on the term Et (dt+j) . We have that

Et (dt+1) = Et (d+ θt+1 + εt+1) = d+ Et (θt+1) + Et (εt+1) = d+ Et (θt+1)

5

since Et(εt+1) = 0.

Similarly

Et (dt+2) = Et (d+ θt+2 + εt+2) = d+ Et (θt+2) + Et (εt+2) = d+ βE
t (θt+1) ,

since Et(εt+2) = 0 and Et(θt+2) = Et(βθt+1 + ηt+2), and in general

Et (dt+j) = d+ βj−1Et (θt+1) .

Therefore we have

pt =

∞∑
j=1

R−j(d+ βj−1Et (θt+1)) = d

∞∑
j=1

R−j + β−1Et (θt+1)

∞∑
j=1

(
β

R

)j

.

Now we have

d

∞∑
j=1

R−j = d

∞∑
j=0

R−j − d = d
R

R− 1
− d =

d

r
,

5Clearly if agents observe the realization of the stochastic component then Et (θt+1) = θt+1. We opt to
keep the notation general because this allows us to simultaneously treat also agents that do not observe the
realization of this noisy component.
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since |R−1| < 1. Similarly

β−1Et (θt+1)

∞∑
j=1

(
β

R

)j

= β−1Et (θt+1)

∞∑
j=0

(
β

R

)j

− β−1Et (θt+1) =

= β−1Et (θt+1)
R

R− β
− β−1Et (θt+1) = β−1Et (θt+1)

β

R− β
.

So that finally

pt =
d

r
+

Et (θt+1)

R− β
.

B Relationship of updating to Kalman Filter

Following the notation in chapter 13 of Hamilton (1994) we have the following state space
representation of our model

ξt = Fξt−1 + vt (state equation)

yt = Hξt + wt (measurement equation)

in which all quantities are scalars and F ≡ β, H ≡ 1. The variance-covariance matrix R

associated with wt is also just the scalar σ2
j,t. In this contest the a priori variance covariance

matrix is just a scalar given by

Pt|t−1 = E(ξt − ξ̂t|t−1)
2 = σ2

η

and the Kalman Gain
Kt = Pt|t−1H(H ′Pt|t−1H +R)−1

collapses to
σ2
η

σ2
η + σ2

j,t

which is exactly the weight associated to the information received by source j in the case
of being connected to source j only.

C Derivation of conditional variance

Vt(pt+1 + dt+1) = Vt(dt+1) + Vt(pt+1) + 2Covt(dt+1, pt+1).

The conditional variance of next period dividends is given by

Vt(dt+1) = Vt(θt+1) + σ2
ε .

The conditional variance of next period price can be derived starting from the expression
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for pt+1 implied by equation (10) and recalling that Et+1(θt+2) = βθt+1. We therefore get

Vt(pt+1) = Vt

(
d

r
+

βθt+1

R− β

)
= Vt(θt+1)

(
β

R− β

)2

.

In a similar fashion we can derive the expression for the covariance of future price and
dividend as

2Covt(dt+1, pt+1) = 2Covt
(
θt+1,

βθt+1

R− β

)
= 2Vt(θt+1)

β

R− β
.

Rearranging we get equation (13).

D Proofs

D.1 Proof of Proposition(1)

The proof is by induction. First we prove the statement for the base case with only one
source, that is Ā = 2. This collapses to the normal case of Bayesian updating with conjugate
normal prior, therefore we have:

µP =
µ1σ

2
0 + µ0σ

2
1

σ2
0 + σ2

1

σ2
P =

σ2
0σ

2
1

σ2
0 + σ2

1

Then we prove that if the statement holds for a generic set A with Ā = n, then it holds
also for B with B̄ = n+ 1. If the statement holds for Ā = n, and receive an extra source of
information, the new posterior distribution will have parameters:

µP =
µK+1

∏K
j=0 σ

2
j∑

[A]Ā−1 +

∑K
k=0

(
µk·[A]Ā−1

k

)
∑

[A]Ā−1 σ2
K+1∏K

j=0 σ
2
j∑

[A]Ā−1 + σ2
K+1

=

∑K+1
k=0

(
µk·[A∪σ2

K+1]
Ā

k

)
∑

[A]Ā−1∏K
j=0 σ

2
j∑

[A]Ā−1 +

∑[
[A∪σ2

K+1]
Ā\

∏K
j=0 σ

2
j

]
∑

[A]Ā−1

=

∑K+1
k=0

(
µk ·

[
A ∪ σ2

K+1

]Ā
k

)
∑[

A ∪ σ2
K+1

]Ā

σ2
P =

∏K
j=0 σ

2
j∑

[A]Ā−1σ
2
K+1∏K

j=0 σ
2
j∑

[A]Ā−1 + σ2
K+1

=

∏K+1
j=0 σ2

j∑
[A]Ā−1∏K

j=0 σ
2
j∑

[A]Ā−1 +

∑[
[A∪σ2

K+1]
Ā\

∏K
j=0 σ

2
j

]
∑

[A]Ā−1

=

∏K+1
j=0 σ2

j∑[
A ∪ σ2

K+1

]Ā
Therefore we have:

µP =

∑K+1
k=0

(
µk · [B]B̄−1

k

)
∑

[B]B̄−1
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σ2
P =

∏K+1
j=0 σ2

j∑
[B]B̄−1

which are the posterior mean and variance for the set B = A∪ σ2
K+1 with B̄ = Ā+1 =

n+ 1, hence concluding the proof.

D.2 Proof of Proposition (2)

If there is no communication then all uninformed agents behave in the same way. The
resulting price is therefore given by

λ
EI,t(yt+1)−Rpt

aVI,t(yt+1)
+ (1− λ)

EU,t(yt+1)−Rpt
aVU,t(yt+1)

= 0,

where now the subscripts U and I are used to label the beliefs, homogenous among
agents in the same category, of uninformed and informed agents. We then retrieve the
beliefs about payoffs for both agents, from equations (12) and (13). For informed agents
we have

EI,t(yt+1) =
dR

r
+

Rθt+1

R− β
, VU,t(yt+1) = σ2

ε ,

while for uninformed agents we have

EU,t(yt+1) =
dR

r
, VU,t(yt+1) = σ2

ε (1 + Φ) ,

where

Φ ≡
σ2
η

σ2
ε(1− β2)

(
R

R− β

)2

,

considering that the unconditional variance of the observable component of dividends is
VU (θt+1) =

σ2
η

1−β2 . This implies that we can rewrite the pricing equation as

λ (1 + Φ)

(
dR

r
+

Rθt+1

R− β
−Rpt

)
= (λ− 1)

(
dR

r
−Rpt

)
,

and with some manipulations we can get

pt =
d

r
+

θt+1

R− β

λ (1 + Φ)

1 + λΦ
,

which by the same reasoning implies

pt+1 =
d

r
+

βθt+1 + ηt+2

R− β

λ (1 + Φ)

1 + λΦ
.

Given the market price we can derive the quantity demanded by informed agents as

XI,t = Λθt+1,
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with
Λ ≡ R(1− λ)

aσ2
ε(R− β)(1 + λΦ)

> 0,

since R > β, R, a, σ2
ε are all positive and

(
1−λ
1+λΦ

)
> 0. This follows from the positivity of Φ

and since for λ ∈ (0, 1) the function f(λ) = λ(1+Φ)
1+λΦ is a continuous and monotonically de-

creasing function over the interval [0, 1] with f(0) = 1 and f(1) = 0. We can then compute
the excessive profit for the informed agents as

ΠI,t = (yt+1 −Rpt) (Λθt+1) =

(
θt+1

(
1− λ (1 + Φ)

1 + λΦ

)
+ εt+1 + ηt+2

λ (1 + Φ)

(R− β)(1 + λΦ)

)
(Λθt+1).

Finally we take expectations, and recalling that the stochastic components εt+1 and ηt+2

are Gaussian white noise we get

E(ΠI,t) = Λ

(
1− λ

1 + λΦ

)
E(θt+1)

2 =
σ2
ηR(1− λ)2

aσ2
ε(R− β)(1 + λΦ)2(1− β2)

> 0.

D.3 Proof of Proposition (3)

Uninformed agents immediately switch to the beliefs of the informed agents, but using θt.
Then for them we have

EU,t(yt+1) =
dR

r
+

Rθt
R− β

, VU,t(yt+1) = σ2
ε .

Then the pricing equation is given by

pt =
d

r
+ λ

θt+1

R− β
+ (1− λ)

θt
R− β

.

Given the market price the quantity demand by informed agents is

XI,t = Γ(θt+1 − θt),

with
Γ ≡ R(1− λ)

aσ2
ε(R− β)

.

We compute the excessive profit for the informed agents as

ΠI,t = (yt+1 −Rpt) (Γ(θt+1 − θt+1)).

Focusing on the first term we get

(yt+1 −Rpt) = θt+1 + εt+1 + λ
βθt+1 + ηt+2

R− β
+ (1− λ)

βθt + ηt+1

R− β
− λ

Rθt+1

R− β
− (1− λ)

Rθt
R− β

,
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and rearranging

(yt+1 −Rpt) = (1− λ)(θt+1 − θt) + εt+1 + λ
ηt+2

R− β
+ (1− λ)

ηt+1

R− β
,

(yt+1 −Rpt) = (1− λ)(β − 1)θt + εt+1 + λ
ηt+2

R− β
+ (1− λ)

(
1 +

1

R− β

)
ηt+1.

We can also rewrite the demand as

XI,t = Γ((β − 1)θt + ηt+1),

so that when taking the expected value we get

E(ΠI,t) = Γ(1− λ)(β − 1)2E(θt)2 + Γ(1− λ)

(
1 +

1

R− β

)
E(ηt+1)

2,

and given that both stochastic components have 0 unconditional mean we have

E(ΠI,t) = Γ(1− λ)(β − 1)2
σ2
η

1− β2
+ Γ(1− λ)

(
1 +

1

R− β

)
σ2
η,

E(ΠI,t) =
σ2
ηR(1− λ)2

aσ2
ε(R− β)

(
(β − 1)2

1− β2
+

R− β + 1

R− β

)
.

The final step is that of confronting the expected profits earned by the informed agents in
this configuration with the expected profits in the no communication case. We can show
that the formers are always greater since(

(β − 1)2

1− β2
+

R− β + 1

R− β

)
>

1

(1 + λΦ)2(1− β2)
,

since we can rewrite the inequality as

(β − 1)2 +
(R− β + 1)(1− β2)

R− β
>

1

(1 + λΦ)2
.

Now the left-hand side is a monotonically and continuously decreasing function f(β) over
the interval (0, 1) with

lim
β→0+

f(β) =
2R+ 1

R
, and lim

β→1−
f(β) = 0,

since

f ′(β) = −β2 − 2Rβ + 2R2 − 1

(β −R)2
.
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The right-hand side is also a monotonically and continuously decreasing function g(β)

over the interval (0, 1) with

lim
β→0+

g(β) =

(
1 + λ

σ2
η

σ2
ε

)−2

, and lim
β→1−

f(β) = 0,

since

g′(β) = −
2
(

2R2λσ2
η

σ2
ε(R−β)3(1−β2)

+
2R2λσ2

ηβ

σ2
ε(R−β)2(1−β2)2

)
(

R2λσ2
η

σ2
ε(R−β)2(1−β2)

+ 1
)3 .

Finally since
lim

β→0+
f(β) > 1 > lim

β→0+
g(β),

we conclude that the inequality holds for every β ∈ (0, 1).

E Sensitivity Analysis
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Figure 10: Sensitivity Analysis for the Small World Network
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Figure 11: Sensitivity Analysis for the Stochastic Block Model
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Figure 12: Sensitivity Analysis for the Scale Free Informed Network
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Figure 13: Sensitivity Analysis for the Scale Free Misinformed Network
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