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Abstract
We study an heterogenous asset pricing model in which different classes of in-

vestors coexist and evolve, switching among strategies over time according to a fit-
ness measure. In the presence of boundedly rational agents, with biased forecasts and
trend following rules, we study the effect of two types of speculation: one based on
fundamentalist and the other on rational expectations. While the first is only based on
knowledge of the asset underlying dynamics, the second takes also into account the
behavior of other investors. We bring the model to data by estimating it on the Bitcoin
Market with two contributions. First, we construct the Bitcoin Twitter Sentiment Index
(BiTSI) to proxy a time varying bias. Second, we propose a new method based on a
Neural Network, for the estimation of the resulting heterogeneous agent model with
rational speculators. We show that the switching finds support in the data and that
while fundamentalist speculation amplifies volatility, rational speculation has a stabi-
lizing effect on the market.
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1 Introduction

Expectations play a crucial role in economics. Aggregate variables depend on the interac-
tion and decisions of multiple individuals. Since these decisions depend on how agents
expect the future to evolve, the way in which expectations are formed bears an effect on
the aggregate variables themselves. Financial markets are a prime example of this expec-
tation feedback since the price of an asset includes expectations regarding its performance,
or its discounted cash flow, in the future. Classical asset pricing models usually assume
agents with rational expectations (RE) a là Muth (1961). The RE hypothesis assumes that
agents form expectations which are model consistent and based on all available informa-
tion. Moreover, classical models assume a representative agent. While idiosyncratic errors
across agents are permitted, on average the economy acts as if populated by a represen-
tative rational agent. If the RE hypothesis was true then the price of any financial asset
should be equal to its fundamental value, the expected present value of dividends. The
literature has long observed that this is not true for many assets, but one cannot easily
disentangle the role of expectations from the one of the discount factor1.

In recent years however, we have had the emergence of an asset class, cryptocurrencies
with no fundamental value. In particular, Bitcoin, the first and most known cryptocurrency
is the 9th asset for market capitalization with a value of 1.3 trillion dollars as of April 2024.
Since Bitcoin does not and will never pay dividends, there is no discount factor which
can explain a non zero price. Among the possible explanations that can still maintain the
RE hypothesis, two are the most prominent. The first one is that of Bitcoin as a rational
bubble, for which all investors agree that the price will indefinitely grow at a rate higher
than the risk-free rate. The second is that although there are no dividends associated with
it, Bitcoin provides investors with some convenience yield. Tax evasion and purchasing of
illegal goods are classical examples. Both explanations have drawbacks. The first because
any transversality condition would make the rational bubble collapse as long as agents are
rational. The second because it would imply a convenience yield almost as volatile as the
Bitcoin price.

In this paper we propose a different explanation: sentiment driven speculation. We relax
the RE assumption in one dimension, namely homogeneity and allow for heterogeneous
investors in the market. As Shalen (1993) notes “it is well understood that speculative trade in
financial markets depends on divergent beliefs”. Papers like De Long et al. (1990) introduce the
concept of noise traders, a group of investors systematically acting on some signal uncor-
related with an asset fundamental. In a similar spirit, Harris and Raviv (1993) and Hong
and Stein (2003) study the effect on the market of differences of opinion among investors.
A common theme of all these papers is that the different beliefs are exogenously deter-
mined. Brock and Hommes (1998) is a noticeable attempt to endogenize the divergence
of beliefs by proposing an Heuristic Switching Model (HSM). Building on this work, our
Bitcoin model considers a market with bias investors and trend chasers whose fractions
evolve endogenously according to their realized profits. Bias investors believe that the

1See for example Adam and Nagel (2023).
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fundamental value of Bitcoin is some positive value. Since this belief is not dictated by
any financial reason, we also refer to them as sentiment followers. Trend chasers add a
short-term demand, driven by momentum. Given the presence of non rational behaviors
among investors, one would expect speculation to be possible in the market. Therefore,
we study two types of speculation, one associated with fundamentalist and one with ra-
tional expectations. It is important to notice that the two do not coincide because of the
presence of heterogeneous agents. Perfect rationality requires knowledge not only of the
asset fundamental but also of the strategies adopted by other individuals. It coincides
with perfect foresight in a deterministic setting. To solve for RE we rely on the Extended
Path (EP) method of Fair and Taylor (1983). We then bring the model to the data intro-
ducing two contributions. First, we propose to capture the bias of agents in the market by
constructing an index based on textual data from Twitter. Using a dataset of more than ten
million tweets containing the word “Bitcoin” we construct the Bitcoin Twitter Sentiment
Index (BiTSI) through sentiment analysis in the form of the Valence Aware Dictionary and
sEntiment Reasoner (VADER). Second, while there are multiple estimations of HSM in the
literature, none of them, to the best of our knowledge, include rational investors. One of
the reasons is that in order to estimate the model according to the Fair and Taylor (1983)
method, one has to first solve for RE using the EP for each combination of the parameters
of interest. As the parameter space grows exponentially with every additional parameter,
this method suffers from the curse of dimensionality. We propose to tackle this issue with a
Machine Learning model. Specifically, we show that it is possible to approximate RE with
a Neural Network (NN) model. In practice, we re-parameterize the problem such that we
only need to estimate the rational expectations vector once. After obtaining the vector,
estimating the model can be done by normal Non-Linear Least Squares.

The rest of the paper is structured as follows: section 1.1 discusses some related lit-
erature, section 2 introduces the HSM, section 3 introduces the BiTSI index, section 4 in-
troduces our method to estimate the non-linear RE model and shows its effectiveness on
simulated data, section 5 estimates the models on real data, section 6 concludes.

1.1 Related Literature

On the theoretical side this papers relates to the literature on HSM, started by the Brock and
Hommes (1997) paper. Their seminar paper focuses on a Cobweb model. Since the agents
needs to make a one period ahead prediction, they are able to analyze a model including
also RE. In financial markets the prediction is a two-step ahead one which makes the anal-
ysis of the model with RE non trivial. Also for this reason in Brock and Hommes (1998)
after analyzing the steady states for the model with perfect foresight, the authors replace
this heuristic with fundamentalist traders. The interplay among fundamentalist, chartists
and bias agents has been studied extensively both in discrete Hommes, Huang and Wang
(2005) and continuous He and Li (2012) time and the reader can refer to Hommes (2021) for
an extensive survey of the literature. A notable exception is Boehl and Hommes (2021) in
which the authors develop a new algorithm to compute perfect foresight in an HSM. With
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respect to their paper we use a different solution procedure to obtain the perfect foresight
solution and provide a method to estimate the resulting non-linear heterogeneous agent
rational model. Moreover while in our case the non-linearity is given by heterogeneity, our
method is general and can be applied to any type of non-linear model with RE. This is im-
portant since while some papers like Fisher, Holly and Hallett (1986) and Armstrong et al.
(1998) have improved the original Fair and Taylor (1983) method in terms of robustness
and efficiency, their focus has been only on solving for RE and not on estimation.

This method allows us to contribute to the literature on the empirical validity of HSM,
by estimating for the first time a model with the RE heuristic. In this area, most papers
relied on Non-Linear Least Squares to estimate a model with mean-reverter (fundamental-
ist) and chartists (trend-followers) on the S&P 500 Boswijk, Hommes and Manzan (2007)
and Chiarella et al. (2014), the option market Frijns, Lehnert and Zwinkels (2010), the gold
market Baur and Glover (2014), the European Credit Default Swap market Chiarella, He
and Zwinkels (2014), the housing market Bolt et al. (2019), US inflation dynamics Cornea-
Madeira, Hommes and Massaro (2019) or a comparison across asset classes ter Ellen,
Hommes and Zwinkels (2021). Lof (2015) also focuses on the S&P 500 but introduces a
third type of agents labeled rational which in our setting would be short-term fundamen-
talists and hence different from RE traders. Finally some papers like Franke and Westerhoff
(2012) and Schmitt (2021) rely on the Simulated Method of Moments to estimate a model
with fundamentalists and chartists.
Another difference with this literature is that we estimate a model including bias investors.
For this we bridge the HSM estimation literature with the one focusing on the role of sen-
timent in the Bitcoin Market which we use as a proxy of time varying bias. The Bitcoin
market exhibits a lesser degree of efficiency compared to other financial markets and is
more prone to speculative bubbles and other market inefficiencies, potentially leading to
substantial investor losses and presenting numerous arbitrage opportunities, as evidenced
in studies like Cheah and Fry (2015), Urquhart (2016) and Makarov and Schoar (2020). In
this setting multiple papers have focused on the effect of sentiment measured on the web-
site StockTwits Chen and Hafner (2019), Guégan and Renault (2021), on Google Trends
Urquhart (2018), Aalborg, Molnár and de Vries (2019), Baig, Blau and Sabah (2019), Liu
and Tsyvinski (2020), X J.Parra-Moyano et al. (2024), the Cryptocurrency Forum Senti-
ment Gurdgiev and O’Loughlin (2020) or the Fear and Greed Index Bourghelle, Jawadi
and Rozin (2022). However, while this literature is empirical and relies on a reduced form
estimation, we estimate a structural model which offers a clear mechanism on how sen-
timent and switching among different strategies can explain the highly volatile Bitcoin
market environment.

2 The model

The economy is populated by I investors with J different beliefs to be specified below.
Time is discrete. We assume that the fundamental value of the asset is equal to 0. This
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implies that any positive price can be seen as price deviation from the fundamental value.
The equilibrium price of the asset is derived from the maximization problem of mean-
variance maximizers agents and given by

Rpt =
J∑

j=1

nj,tFj,t(pt+1) + εt, (1)

where Fj,t(pt+1) is the subjective forecast implied by belief j and R = 1 + r is the gross
risk-free rate. Timing is important and we assume that the current equilibrium price pt is
not realized and therefore not available to the agents when forming their beliefs. In other
words they are making a two period ahead forecast. Equation (1) simply states that the
current price is a weighted average of the different J beliefs, weighted by the fraction of the
population nj,t that embraces the belief at time t. εt is normal, identical and independently
distributed noise. Fractions are updated every period according to a fitness measure that
is public knowledge and is given by past returns in excess of the risk-free rate

πj,t = (pt −Rpt−1) (Fj,t−1(pt)−Rpt−1) . (2)

The fraction of agents choosing strategy j is given by the multinomial logit model Man-
ski and McFadden (1981)

nj,t =
eβπj,t−1∑J
j=1 e

βπj,t−1
. (3)

The parameter β represents the intensity of choice. When β = 0, agents simply ran-
domize in their predictor’s choice, and fractions are constant at 1/J . When β → ∞ agents
immediately switch to the most profitable strategy, and all but the fraction associated with
the best strategy are zero. Equations (1) and (3) jointly determine the full price and frac-
tions evolution. A micro-foundation of the model is given in Appendix A. It is important
to notice that realized profits and forecast accuracy are not perfectly proportional. When
an individual has a perfect forecast, their profits are guaranteed to be positive and given
by (pt −Rpt−1)

2. However for an individual with incorrect forecast to earn more than
this quantity it is sufficient to be inaccurate in the “right direction”. Consider the quantity
(pt −Rpt−1) (Fj,t−1(pt)− pt) which represents the numerator of the difference in realized
profits obtained by a perfectly accurate individual, and a generic individual employing
strategy j. For this quantity to be positive, thus consisting of more profits for the agent
using the “incorrect forecast”, it is sufficient that

sgn (pt −Rpt−1) · sgn (Fj,t−1(pt)− pt) = 1,

with sgn(x) = x/|x| is the sign function. The intuition is that the forecasting error has
the same direction of the price change. The reason why even with a perfect forecast an
individual does not purchase or sell unlimited quantities of the risky asset is the bound
imposed by their risk aversion and the variance of the risky asset. Incorrect investors are
overly optimistic or pessimistic, therefore purchasing or selling more then they should.
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Sometimes, by chance, their overconfidence pays off.

2.1 Expectations

We assume that all forecasting strategies are given by a linear function of past and future
prices and of a bias process.

Fj,t(pt+1) = hj,t({pt−l}Ll=1, {Et(pt+j)}Kj=0, {wt−l}Ll=1).

with wt being an observable i.i.d stochastic process independent of prices. The func-
tional form allows for simple but typical beliefs supported by experimental evidence as
in Hommes et al. (2005) or for more sophisticated ones. The formulation so far is general
enough to accommodate for a multiplicity of strategies as in Brock, Hommes and Wagener
(2005), but we will focus on 4 strategies that are representative of behaviors we expect to
see in the market and are summarized below.
Trend chasers. Sometimes also referred to as chartists. They form their forecast by an
analysis of past prices. We consider the simplest form given by

hj,t({pt−l}Ll=1, {Et(pt+j)}Kj=0, {wt−l}Ll=1) = gpt−1, g > 0. (4)

In forming their expectations they extrapolate from last period price deviation. The
parameter g being greater then 0 implies that they expect positive price deviations to
continue. The magnitude of g determines the degree of trend following with the case
g > R = 1 + r usually referred to as strong trend chasing. The presence of this category
of investors in the system is consistent with evidence provided by the literature about the
existence of a momentum factor in stock markets, and originated by the seminal paper of
Jegadeesh and Titman (1993).
Pure bias. This class of investors base their beliefs on some process which in the empiri-
cal part we will think of as sentiment, unrelated to the asset fundamentals or prices. Their
forecast is

hj,t({pt−l}Ll=1, {Et(pt+j)}Kj=0, {wt−l}Ll=1) = bwt−1, b > 0. (5)

Fundamentalists. Investors of this type base their expectations on the fundamental value
of the asset. They would be rational in a homogeneous rational world in the sense that
if the market would be populated only by fundamentalists, then their forecast will be the
correct one. They do however fail to take into consideration the presence of boundedly
rational agents with different beliefs in the market. Recalling that the fundamental value
in this setting is equal to 0 we have

hj,t({pt−l}Ll=1, {Et(pt+j)}Kj=0, {wt−l}Ll=1) = 0. (6)

Rational expectations. They are the more sophisticated investors having knowledge of the
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underlying model regulating the asset price evolution and the composition of the market.
Their forecast is the correct one and coincides with the one the modeler would obtain:

hj,t({pt−l}Ll=1, {Et(pt+j)}Kj=0, {wt−l}Ll=1) = Et(pt+1). (7)

We now investigate the dynamics that can emerge from the interactions of these simple
strategies. The first case we consider is a two type market.

2.2 Trend chasers vs pure bias

We take the first strategy to be trend chasing as in (4) and the second one to be pure bias
(5). We start by considering deterministic simulations and assume that wt−1 is constantly
equal to its expected value which we fix to 1 without loss of generality. We also keep the
noise component ε fixed at its expected value of 0.

The full model is therefore given by the following two equations:

Rpt = n1,tgpt−1 + (1− n1,t)b, (8)

n1,t = {1 + exp(β(pt−1 −Rpt−2)(b− gpt−3))}−1 . (9)

We provide an analytical characterization of the steady states of the system, for extreme
values of the intensity of choice parameter β.

Lemma 1 (Steady States for the two type model) For β = 0 the model has a unique and lo-
cally stable steady state p = b

2R−g . For β → +∞ there are the following possibilities. If g = R then
any 0 < p ≤ b

R is a steady state with all steady state 0 < p < b
R being locally unstable and p = b

R

being locally stable. If g > R there exists a unique steady state p = b
R which is locally stable. If

g < R there are no (positive) steady states.

Proof. See Appendix B.
The lemma shows that the even in the neoclassical limit in which agents immediately
switch to the best performing strategy, pure bias agents are not pushed out of the mar-
ket. Indeed the most interesting case is the one in which g > R and trend chasing is strong.
In this situation the steady state is a positive deviation from the fundamental value, the
magnitude of which depends on b. When β is strictly positive, the steady state equation
can only be derived implicitly. We do this in Appendix C while below we use numerical
simulations to highlight the global dynamics that this system may generate.

2.3 Numerical Simulations: b = 1.0, g = 1.3, R = 1.01

We fix all parameters but the intensity of choice β. We then study the global dynamics
of the model. First, we report a Bifurcation diagram for increasing value of the intensity
of choice parameter. For each value of β we simulate 10000 iterations of the system, and

7



then visualize the last 2000 price realisations, in order to eliminate the effect of initial con-
ditions. In panel (a) of Figure 1 we can observe that the system has a stable steady state
for values of the intensity of choice lower than approximately 6.725. After the parameter
crosses this value, a bifurcation occurs. In order to characterize this bifurcation and the
system dynamics after bifurcation, we use maximum lyapunov exponents2 and a plot of
the modulus of the system eigenvalues. The maximum lyapunov exponent is a convenient
tool to detect chaos in dynamical system, which is associated with positive values of the
exponent. As we can see in panel (b) of Figure 1 the exponent is negative for low values
of β and becomes equal to 0 after the bifurcation. Therefore the system exhibits periodic
and quasi periodic orbits, never producing chaos. In panel (c) we plot the modulus of the
eigenvalue of the system, that we compute in section (B.4) of the appendix. We can see
that for values of β ≈ 6.725 the two complex eigenvalues cross the unit circle. We con-
clude therefore that a Hopf bifurcation occurs. Finally in panel (d) we show the creation
of stable invariant circles after the bifurcation, allowing us to classify the bifurcation as
super-critical.

Figure 1: Numerical simulations for the two type system, other parameters are g = 1.3,
b = 1, R = 1.01. A Hopf bifurcation occurs for β ≈ 6.725, as the two complex eigenvalues
have modulus |λ2| = |λ3| = 1. After the bifurcation periodic and quasi periodic orbits are
created.

We then investigate the mechanism responsible for the orbit observed, by plotting the
trajectory of the system and the fractions evolution for a value of the intensity of choice
β = 7.0, in Figure 2. The bubble and burst behavior is caused by oscillating periods of

2The computation is an in-built function of the package Julia package DynamicalSystems.jl, that relies on
the method by Benettin et al. (1980).
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optimism and pessimism. Pure bias agents act in a way which is qualitatively similar to
fundamentalists in the original Brock and Hommes (1998) paper, but their bias implies that
the fluctuations are translated upward. The bubble is sustained by a growing population
of trend chasers in the market. As long as the next period has a higher concentration of
trend chasers, their predictions are self fulfilling. When their proportion reaches a value
close to 55% of the population however the price starts to stagnate, implying a decline in
the profitability of this strategy. Next period will then see a lower share of these agents in
the market and so on, bursting the bubble.

Figure 2: Time series of price deviation (top) and fractions (bottom) for β = 7.0

2.4 Introducing Speculation

Given the presence of non rational behaviors among investors, classical economic theory
would predict that a rational speculator may earn positive returns with its activity, until
irrational investors are pushed out of the market, and prices return to rational levels. How-
ever, to put it in the words of Keynes: “Markets can stay irrational longer than you can stay
solvent”. This is especially true in our model in which the fundamental value of the asset is
zero which implies that every strictly positive price can be seen as “irrational”. We remark
again that being rational in an irrational world, is crucially different than being fundamen-
talist. Moving forward therefore we will compare the two cases: when speculators are
fundamentalists and when they take into account the “irrationality” of others.

2.5 Trend chasers vs pure bias vs fundamentalists

We now study a three type market. The first two strategies are the same as before, the third
class of agents are fundamentalists as in (6). The resulting three type model is then given
by
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Rpt = n1,tgpt−1 + n2,tb,

with

n1,t =
exp{βπ1,t−1}∑3
j=1 exp{βπj,t−1}

, n2,t =
exp{βπ2,t−1}∑3
j=1 exp{βπj,t−1}

.

As before, we offer a lemma about the existence of steady states of the model.

Lemma 2 (Steady States of the model with fundamental speculators) For β = 0, the model
with the fundamentalist speculator has a positive and unique steady state p = b

3R−g . For β → +∞
there are no positive steady states.

Proof. See Appendix B.
We observe that when no switching is present in the model, the resulting steady state is
lower then the one in the benchmark two types model. This is consistent with the price
reflecting the fundamentalist expectations of the third category of investors. The impact of
these agents on global dynamics however is not so straightforward, and we turn again to
numerical simulations to analyze it.

2.6 Numerical Simulations: b = 1.0, g = 1.3, R = 1.01

Just as before we fix all parameters but the intensity of choice β. In panel (a) of Figure
3 we can observe that the system has a stable steady state for values of the intensity of
choice lower than approximately 5.6. After the parameter crosses this value, a bifurcation
occurs. Again, in order to characterize this bifurcation and the system dynamics after
bifurcation, we use maximum lyapunov exponents and a plot of the modulus of the system
eigenvalues. As we can see in panel (b) of Figure 3 the exponent is negative for low values
of β and becomes equal to 0 after the bifurcation. Therefore the system exhibits periodic
and quasi periodic orbits, never producing chaos. In panel (c) we plot the modulus of the
eigenvalues of the system, that we compute in section (B.4) of the appendix. We can see
that just as before for values of β ≈ 5.6 the two complex eigenvalues cross the unit circle
and a Hopf bifurcation occurs. Finally in panel (d) we show the creation of stable orbits
after the bifurcation, again allowing us the bifurcation as super-critical. Two consideration
must be made at this point: first, the presence of the fundamentalist type, pushes the
overall price closer to the fundamental one. Second, disagreement is added in the system.
This causes periodic and quasi periodic orbits to occur for lower values of the intensity of
choice, and orbits to have higher amplitude then with respect to the two types model.
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Figure 3: Numerical simulations for the fundamentalist speculation system, other param-
eters are g = 1.3, b = 1, R = 1.01. A Hopf bifurcation occurs for β ≈ 5.6, as the two
complex eigenvalues have modulus |λ2| = |λ3| = 1. After the bifurcation periodic and
quasi periodic orbits are created.

Figure 4 shows that the dynamic is mainly led by the fundamentalist and the bias cate-
gories of investors, whit the trend following strategy never being adopted by more than 40
% of the model’s population. The bubbles now are formed after the price is close the fun-
damental value. At this point almost all use the fundamentalist strategy. In the next period
however the price is going to slowly increase since the few reaming pure bias agents in the
market think that the price is extremely low and will demand large quantities. This leads
the price to slowly increase and fuel the proportion of trend chasers agents, sustaining the
bubble. The burst has similar but reversed story. When the price is high a small fraction
of fundamentalist agents think the price is extremely high and sell high quantities of the
asset. Pure bias agents are not ready to accommodate this with their demand since the
price is already close to what they believe is the proper evaluation of the asset. As a result
the bubble collapses and the price starts to go back to the fundamental value.
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Figure 4: Time series of price deviation (top) and fractions (bottom) for β = 7.0

2.7 Trend chasers vs pure bias vs rational expectations

We now study a second three types market. The first two strategies are the same but
we replace fundamentalists with rational expectations as in equation (7) which gives the
following full model (in absence of noise)

Rpt = n1,tgpt−1 + n2,tb+ n3,tpt+1, (10)

with

n1,t =
exp{βπ1,t−1}∑3
j=1 exp{βπj,t−1}

, n2,t =
exp{βπ2,t−1}∑3
j=1 exp{βπj,t−1}

, n3,t =
exp{βπ3,t−1}∑3
j=1 exp{βπj,t−1}

.

We offer the usual lemma for the existence of steady states for extreme values of the
intensity of choice.

Lemma 3 (Steady States of the model with rational speculators) Assume β = 0, then the
model with the rational speculator has a positive and unique steady state p = b

3R−g−1 . When
β → ∞, then the model has no positive steady state.

Proof. See Appendix B.
As before the first observation comes from the case of no switching among strategies. The
presence of rational speculators, implies a steady state value slightly lower than in the
baseline model. However compered with the three type model with fundamentalist spec-
ulator, we observe that the steady state value is much larger. The need for the rational
speculator of considering the bias in its forecast, makes so that the model steady state is
further away from the fundamental. While in the previous models we were able to provide
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numerical simulations effortlessly, this is not possible in this case. The presence of the pt+1

term on the right hand side of equation (10) makes it unfeasible to simulate the model by
leveraging established methods from difference equations. To derive rational expectations
we then rely on the Extended Path (EP) method proposed by Fair and Taylor (1983)3.

Obtaining Rational Expectations with the Extended Path Method
Before describing the algorithm we find it useful to highlight what we are after and

why we need the algorithm in the first place. Start by assuming that expectations formed
by the rational agent in the past are indeed rational, that is Ft−3(pt−1) = pt−1. Then the
rational agents needs to choose Ft−1(pt+1) considering the following. After the choice
is made, a realization of pt is going to be determined by equation (10). Given this and
Ft(pt+2) one can shift (10) forward one period to obtain the realization pt+1. In order for
an agent to have rational expectations we then require Ft−1(pt+1) = pt+1. Hence when
forming expectations at time t − 1 the agents must consider how expectations are going
to be formed at time t. At time t this is still true, and the agent will have to consider
what their expectations are going to be at time t + 1 and so on. Essentially the whole
future path of expectations is relevant for the choice of expectations today and hence for
actual realization of the state variable. We are now ready to describe the algorithm. We are
intersted in a path Pt = (pt, pt+1, . . . , pt+T ), to obtain it:

(i) Choose an integer k, an initial guess of the number of periods beyond the horizon
T , in order to obtain a solution which differs from rational expectations below a
tolerance level ϵ. Generate an initial expectations vector
E0 = (pt−L, . . . , pt−1, pt, pt+1, . . . , pt+T , . . . , pt+T+k);

(ii) Use (10) and then shift the resulting vector to obtain
E1 = (pt−L, . . . , pt−1, pt, pt+1, . . . , pt+T , . . . , pt+T+k);

(iii) Compute the sum of the absolute deviation between E0 and E1. If this is less then
ϵ set E0 = E1 and return to step (i). Theses iterations are called Type 1. Call Ek the
vector obtained after convergence;

(iv) Repeat steps (i) to (iii) by replacing k with k + 1. Call Ek+1 the vector obtained after
convergence. Compute the sum of the absolute deviation between the corresponding
elements in Ek and Ek+1. Iterate until it holds that |Ek+i−Ek+i+1| < ϵ for some i. These
iterations are called type 2;

(v) The rational path vector is given by the corresposding T + 1 elements of the vector
Ek+i.

Now as Fair and Taylor (1983) notice in the original paper “for a general non-linear model
there is no guarantee that any of the iterations will converge. If convergence is a problem, it
is sometimes helpful to ”damp” the successive solution values.” In practice this will be true

3Boehl and Hommes (2021) recently proposed a new algorithm that achieves higher accuracy compared to
the EP in a similar setting. In our specific case we find that the EP obtains a sufficient accuracy and as such
using a more sophisticated method is not needed.
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in our case when the system enters the unstable region. To deal with this we change the
updating mechanism such that the new vector is a convex combination with weights equal
to 0.5 of the original vector and of the new one. Finally in order to avoid the algorithm to
run forever, we set a maximum of 1000 type 1 iterations and 100 type 2 iterations. The
parameters of the algorithm that we set are then T = 2000, ϵ = e−14 and k = 100. In Figure
12 we report the sum of absolute deviations between the rational expectation vector and
the realizations of state variables, for increasing values of the intensity of choice β on the
x-axis. We can see that although the error is slightly higher in the unstable region, its
magnitude is almost always lower than 8× 10−15.

2.8 Numerical Simulations:b = 1.0, g = 1.3, R = 1.01

As with the previous two models we study global dynamics of the system for fixed values
of the parameters b, g and R, and varying the intensity of choice β. In panel (a) of Figure 5
we plot the bifurcation diagram for increasing values of the intensity of choice β. We can
observe that the system exhibits a stable steady state for values of the intensity of choice
smaller than 6.7. After this value a bifurcation occurs, and the system enters an unstable
region. Unfortunately the presence of the rational agents prevents us to analytically com-
pute the eigenvalues of the system, and we can not fully characterize the bifurcation. We
can observe however by means of a phase plot in panel (b), that the system exhibits quasi
periodic orbits with longer periodicity than with respect to the system with the fundamen-
talist speculator. In fact the dynamics are similar to those of the two type model.

Figure 5: Numerical simulations for the model with rational speculators, other parameters
are g = 1.3, b = 1, R = 1.01.

The main consideration to make is that unlike the case with the fundamentalist spec-
ulators, the system does not approach the fundamental value, even after the bifurcation
occurs. To get a better sense of this phenomenon, in Figure 6 we plot the fractions evolu-
tion for a value of the intensity of choice β = 7.0.
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Figure 6: Time series of price deviation (top) and fractions (bottom) for β = 7.0

We can see that the fraction of agents using the rational forecast fluctuates significantly
less than the other two. Therefore there are two reasons why the resulting price is further
away from the fundamental value. The first one is that in order to produce an accurate
forecast, rational speculators must take into account the other two agents behavior. This
results in a forecast significantly higher than the one a fundamentalist agent would make.
The second one is that, as we already remarked, realized profits and forecast accuracy are
not perfectly correlated. Speculators using the rational forecast are always present in the
system, but they are not able to drive other strategies out of the market. The bubble and
bursts motif is similar to the one in the two type models. The bubble is sustained by a
growing fractions of trend chasers. Notice however how the fraction of rational agents
increases right after the beginning of the bubble and after its collapse. This is the result of
this strategy being able to forecast the bursts and booms perfectly. An additional result of
this behavior is that the oscillation are dampened as we discuss in the next section.

2.9 Speculation Effects

As we can see in Figure 7 the two types of speculation have different effects on the market.
When speculators are fundamentalist, they drive prices towards the fundamental bench-
mark. Their presence though results in increased disagreement, which in turn causes the
model to enter the unstable region for lower values of the intensity of choice. Moreover
in the unstable region, the resulting volatility is substantially increased. When speculators
are rational, we can observe that prices are on average slightly lower than compered with
the no speculation case, but still far from the fundamentalist benchmark. An interesting
result is that rational speculation decreases volatility in the unstable region with respect
to the two type model. This is because speculators can predict the bursting of the bubble
and take position before its realization. By doing so they dampen the oscillations in the

15



market. Rational speculation can have a positive effect on reducing volatility, at the cost
of keeping prices further away from the fundamental price that would be achieved in an
homogeneous rational world.

Figure 7: Bifurcation diagrams for all the models
Note: The figure shows a bifurcation diagram of the two types model (orange), the model with rational
speculators (green) and the one with fundamentalist speculator (black) for increasing values of β. Other

parameters are g = 1.3, b = 1.0, R = 1.01

3 Taking the model to the data

In this section, we focus on empirically validating the models previously discussed, utiliz-
ing real data from the Bitcoin market.

Our objective is to transition from a static bias to a stochastic measure of bias or senti-
ment wt. To construct a proxy for market sentiment towards Bitcoin, we utilize data from
Twitter (currently known as X), assuming that a Tweet conveys part of what a specific
investor feel regarding the asset.

We scraped the website for all posts containing the term ”Bitcoin” from November 1,
2019, to December 30, 2022. To derive a meaningful sentiment index from this textual data,
we used standard preprocessing steps to eliminate stopwords and non-alphabetic charac-
ters. We then employed the VADER sentiment analysis library, introduced by Hutto and
Gilbert (2014). VADER determines the sentiment of text using a mix of lexical heuristics
and a sentiment lexicon, and it can handle idiomatic language and sarcasm. Sentiment
scores, ranging from -1 (highly negative) to +1 (highly positive), with 0 indicating neutral-
ity, were computed for each tweet based on the presence of positive, negative, and neutral
words. These scores were aggregated daily to form an index labeled Bitcoin Twitter Senti-
ment Index (BiTSI). Figure 8 shows the evolution of the index and the daily closing price
of Bitcoin in US Dollars. To contextualize the index’s peaks and troughs, we highlight the

16



headlines of articles associated with the three highest and lowest BiTSI values, offering
insights into the news events likely driving these sentiment shifts.

Figure 8: Bitcoin and BITSI time series, with relevant events

The index, and the sheer number of tweets per day statistics, are reported in Table 1.

Table 1: Descriptive statistics for the BiTSI and number of Tweets per day

BiTSI Volume
mean 455.85 8626.90

std 426.51 5160.04
min -841.15 650
max 5264.47 56179
skew 2.58 1.66

kurtosis 18.58 8.06
obs 1117 1117

As a first analysis we show that our index is not capturing information from other
sources highlighted by the literature as having explanatory power on the cryptocurrency
return. In a similar fashion to the traditional factor models, Shen, Urquhart and Wang
(2019) and Liu, Tsyvinski and Wu (2022) both show that the cross section of cryptocur-
rencies’ excess returns can be substantially explained by three factors: market, size and
momentum. In Figure 9 we show correlation among the index and other variables that
should proxy at daily level the role of the three factors mentioned above. Excess return
is measured as the difference between daily Bitcoin returns and daily risk free rate, rep-
resented by the Market Yield on U.S. Treasury Securities at 1-Year Constant Maturity and
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available on FRED.4 We then have two proxies for momentum, given by the first and sec-
ond difference of daily closing price. Finally ’Volume’ represents the daily volume of Bit-
coin. All Bitcoin data are gathered from Yahoo Finance. In order to check for the possibility
of delayed impact of these factors on the index, we also reported lagged values of all the
variables, represented by the ’(t-1)’ label at the end of the symbol.

Figure 9: Correlation of the BiTSI and other variables

The correlation between the index and all the other variables is mostly positive and
relatively small, except the one with Volume. The result is however explained by the cor-
relation, already documented in the literature, between Bitcoin volume and Tweet volume.
This is why we also include the Normalised BiTSI, where the normalization factor is the
volume of Tweets per day. After removing the magnitude effect, the index appears to be
only mildly correlated to the variables.

4 Estimating Non-linear Rational Expectation models with a Neu-
ral Network

We turn now to the estimation of the three models introduced above. While the first two
are straightforward to estimate via Non Linear Least Squares (NLS), the model with ratio-
nal speculators requires obtaining rational expectations first. In their paper Fair and Taylor
(1983) propose a maximum likelihood estimation which is built on the EP algorithm. The
idea is to first solve the model for rational expectations given a choice of the parameters.
After obtaining the rational expectations vector one can compute the log-likelihood associ-

4The yearly rate is then transformed in the corresponding daily one by rdaily = ryearly/365. The choice is
motivated by the yearly capitalization of the instrument.
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ated with the parameters. In order to obtain the optimal estimates one has therefore to ap-
ply the EP algorithm for every possible combinations of parameters in a specific grid. This
can be computationally expensive as in our case we are interested in the three behavioral
parameters, g, b and β and would require a high grid density given the highly non-linear
structure of the problem. To summarize their procedure suffers from the curse of dimension-
ality as every extra parameters to be estimated exponentially increases the computational
time. To deal with this we propose a procedure which consists of two ingredients. The
first is to ensure that we can express the state variable as a function of past states only. A
general formulation for our specific problem is of the form

pt = F({pt−l}Ll=0, {Et(pt+k)}Kk=1, {wt−l}Ll=0;α) + εt

and we want to estimate the parameter vector α. First we follow Fair and Taylor (1983) in
setting all future disturbances εt equal to their conditional mean in a deterministic model.
This is needed since in a non-linear rational model, conditional expectations will involve
higher order moments. As there is no ex ante way of assessing the goodness of this approx-
imation for a general non linear model, we can only assess that in practice this is sufficient
for our case. Therefore we focus on

pt = F({pt−l}Ll=0, {pt+k}Kk=1, {wt−l}Ll=0;α) + εt

Defining by F (n) the function obtained from F by iterating all future expectations of the
state variables n-1 times. We can easily see that if

lim
n→+∞

∂F (n)

∂pt+k
→ 0, for allk > 0,

and there exist a finite M such that

pt+k ∈ [−M,M ], for allk > 0,

then there exist a generic function H of past states only, a N and an ϵ > 0 such that for all
n > N ∣∣∣F (n)({pt−l}Ll=0, {pt+k}Kk=0, {wt−l}Ll=0;α)−H({pt−l}Ll=0, {wt−l}Ll=0;α)

∣∣∣ < ϵ

This ensures that iterating the function with respect to future variables, we eventually
reach a point after which the impact of the future on today is negligible. Unfortunately
showing that a general function F satisfies the assumption is not trivial in non linear
cases.5 We can only assess that in practice this condition is likely to be met for realistic
values of the parameters.

The second ingredient is that of obtaining an approximation to the unknown function

5For a detailed discussion we can refer to Boehl and Hommes (2021)
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H via a Neural Network (NN), that is reparametrizing

H({pt−l}Ll=0, {wt−l}Ll=0;α) ≈ Ĥ({pt−l}Ll=0, {wt−l}Ll=0; θ),

where now θ are the parameters of the NN. We deem this appropriate as it was shown in
Hornik, Stinchcombe and White (1989) that multilayer feedforward networks are universal
approximators.

We now specialize to the case at our hand. Start from

pt = F(pt−1, pt−2, pt−3, pt+1, wt−1, wt−3;α).

we get
pt+1 = H(pt−1, pt−2, pt−3, wt−1, wt−2, wt−3;α),

and approximate it via a NN

pt+1 = Ĥ(pt−1, pt−2, pt−3, wt−1, wt−2, wt−3; θ),

with architecture described in Appendix E. After obtaining a vector of rational expecta-
tions {Et−l(pt+1−l)}Ll=1 we can proceed with estimation. To show that our method is indeed
able to obtain a satisfactory approximation of rational expectations we use the following
exercise. We generate synthetic data for the model with trend chasers vs pure bias vs ra-
tional speculators, for two values of the intensity of choice β ∈ {3.0, 7.0} corresponding
to the stable and unstable region and keeping all other parameters fixed at their level of
g = 1.3, b = 1.0, R = 1.01. For each of these two regions, we generate a model with a
Noise to Signal ratio of 0 (corresponding to the deterministic case), 0.01 and 0.1. We then
train the NN on the synthetic data and show the Mean Squared Error (MSE) between the
NN estimates and the true rational expectations vector. Then, using the NN estimates, we
estimate the three parameters g, b and β with NLS and report the point estimate and the
associated standard errors in parentheses. Results are shown in Table 2.

Table 2: Estimation on syntethic data

Stable region, β = 3 Unstable region, β = 7

N/S 0 0.01 0.1 0 0.01 0.1
MSE 0.0000 0.0009 0.0009 0.0037 0.0050 0.0235

g 1.17 (0.00) 1.26 (0.03) 1.26 (0.03) 1.29 (0.00) 1.25 (0.02) 1.10 (0.01)
b 1.17 (0.00) 1.07 (0.04) 1.07 (0.04) 1.01 (0.00) 1.05 (0.02) 1.11 (0.02)
β 0.88 (0.00) 3.10 (0.89) 3.07 (0.88) 7.40 (0.05) 6.79 (1.02) 8.85 (1.28)

We can see that the NN is able to approximate the rational expectations vector with
a low Mean Squared Error. Clearly the approximation deteriorating when the Noise to
Signal ratio increasing. This however does not seem to impair the estimation. Estimates
for the g and b parameter are close to their true value, with the noticeable exception of
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the first column. When the dynamics are stable and there is no noise, there is simply no
variance to estimate correctly the parameter values. The estimation of the intensity of
choice parameter is the one associated with the higher standard errors. This is in line with
findings in the literature Boswijk, Hommes and Manzan (2007), ter Ellen, Hommes and
Zwinkels (2021) documenting that the pinning down of the parameter is hard to achieve.
The reason is that large changes in this parameter have only mild effects on the overall
fractions, given the smoothness of the multinomial logit function. In any case we find that
the point estimate is always in the confidence interval, except when no noise is present.

5 Estimation

We now turn to the estimation of real data. We accommodate some changes to allow the
incorporation of financial data into the theoretical model. First, we incorporate a time
varying risk-free rate, as proxied by the Market Yield on U.S. Treasury Securities at 1-Year
Constant Maturity discussed above so that instead of having a fixed R we have a time
varying Rt. Second we deal with the non-stationarity of the data. We follow ter Ellen,
Hommes and Zwinkels (2021) in rewriting the model in deviation from a moving average

MAt =

∑1
i=W pt−i

W

where W is the window size, so that our state variable is xt = pt − MAt. In the baseline
we fix it to 40 days. We discuss the sensitivity of the estimation to this choice in Ap-
pendix G. Third, we need to deal with numerical overflows in the estimation caused by
taking exponents of large profits when computing the fractions. We do this by assuming
that the subjective variance of the variable our agents needs to forecast is homogeneously
equal to the square of the last available moving average (MAt−3)

2. Lastly we deal with
heteroskedasticity of residuals by rewriting the model in percentage deviation from the
moving average fundamental, by simply dividing both sides of the pricing equation by
the fundamental value itself.

The model we take to the data is then the following

Rt
xt

MAt
= n1,tg

xt−1

MAt
+ n2,tb

wt−1

MAt
+ n3,t

F3,t(xt+1)

MAt
,

where n3,t will be 0 in the two types model, and F3,t(xt+1) will be 0 in the fundamental
case and the output of the Neural Network model in the rational one.

Fractions are given as the usual multinomial logit, where now the fitness measure is
given by

π1,t =
1

MA2
t−3

(xt −Rt−2xt−1) (gxt−3 −Rt−2xt−1) ,

π2,t =
1

MA2
t−3

(xt −Rt−2xt−1) (bwt−3 −Rt−2xt−1) ,
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π3,t =
1

MA2
t−3

(xt −Rt−2xt−1) (F3,t−2(xt−1)−Rt−2xt−1) ,

which are the usual profits divided by the square of the moving average fundamental.
We use this non centered second moment as a time varying proxy of the volatility of the
asset.

We then plot and test the variables for stationarity in Appendix F.
We finally estimate the parameters g, b and β for the three model presented by NLS.

Results are reported in Table 3.

Table 3: Estimation results

Trend chasers vs pure bias Tc vs B vs Fundamentalist Tc vs B vs Rational Expectations

g 1.91 (121.66) 2.86 (121.51) 1.92 (84.14)
b 0.58 (6.5) 0.87 (6.5) 0.83 (6.41)
β 1.03 (2.12) 0.51 (2.14) 1.45 (2.05)

Adj r2 0.94 0.94 0.94
F-stat 4.61 (0.03) 4.74 (0.03) 4.34 (0.04)

het 0.17 0.17 0.11

We report the point estimate of the parameters and the associated t-statistic in paren-
theses. We also report the adjusted R-squared value, and the value and associated p-value
of the F-test for the significance of the non-linear model with respect to a linear one. This
can be seen as nested in the non-linear model and corresponding to a value of the intensity
of choice β equal to 0. Lastly we report the p-value associated with the Engle’s Test for
Autoregressive Conditional Heteroscedasticity on the estimation residuals. The null hy-
pothesis in the test is that of homoskedasticity and we can not reject it in all specifications
given the p-values. Nonetheless we run the estimation again by obtaining confidence in-
terval for the parameters by an heteroskedasticity robust bootstrap procedure in Appendix
H. The first type of investors are strong trend chasers, expecting deviations from funda-
mentals to continue with increased magnitude in the subsequent periods. This is in line
with psychological aspects, like “fear of missing out” (FOMO) which is extremely relevant
in the cryptocurrency market and documented for example by Baur and Dimpfl (2018).
Their extrapolation becomes highest in the model with fundamentalist agent. This can be
explained by the presence of a type of investor in the model that always forecasts the fun-
damental price, therefore absorbing part of what before we might have classified as mild
trend chasers. The second category of investors can be classified as weakly sentiment fol-
lowers, as they constantly expect a small deviation from the fundamental moving average
which is positively proportional to the sentiment index. The F-test confirms in every case
evidence of non-linearities, at least at the 5% level. The small but significance estimate for
β implies long periods of coexistence of different strategies in the market. However as we
can see from Figure 10 there are periods of substantial switching. We conjecture that the
result is due to the proximity of the intensity of choice to the bifurcation. Large enough
shocks can temporarily affect the stability of the steady state and drive the model in the
unstable region, with a resulting volatility amplification that can last for several days.
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(a) Trend chasers vs pure bias

(b) Trend chasers vs pure bias vs fundamentalists

(c) Trend chasers vs pure bias vs rational expectations

Figure 10: Fractions evolution for estimated parameters

6 Conclusion and Discussion

In this paper we have proposed a heterogeneous agent asset pricing model with differ-
ent categories of investors endogenously evolving over time. The presence of boundedly
rational investors in the market, with trend following and bias forecasting rules, raises
the question about speculation opportunities. We have introduced two different types of
speculation. The first one is associated with fundamentalist traders, that know the true un-
derlying process of the asset and behave accordingly. We remarked however that to have
rational expectations in our model one has to take into account the (possibly incorrect)
strategies of other investors. We show that when speculators are of the second type, the
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resulting price is further away from the fundamental price but volatility is reduced com-
pared to the fundamentalist speculation benchmark. Hence rational speculators have a
stabilising effect on the market. The second part of the paper is devoted to provide empir-
ical support to our model. We opted to use data from the Bitcoin market and constructed
the BiTSI index, that we used as a proxy of a time evolving bias. The BiTSI index is shown
to capture an aspect of the market which is uncorrelated with the main factors highlighted
by the literature in explaining Bitcoin returns. To estimate the non-linear dynamic rational
expectation model we proposed a methodology using a Neural Network which overcomes
the curse of dimensionality. We showed that this method provides a satisfactory approx-
imation of rational expectations on synthetic data. After estimating the models by Non
Linear Least Squares we found evidence of the coexistence of multiple strategies in the
market and of mild switching.
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A Micro-foundation of the Brock and Hommes (1998) Model

Consider an overlapping generation model. The economy is populated by N agents living
two periods. When young agents receive w0 units of consumption good. When old they
consume all of their wealth, with a utility function given by

U(ct+1) = −e−act+1 ,

where a > 0 is the coefficient of absolute risk aversion. Agents can chose between two
types of securities to transfer wealth from the first period to the second. They can use a
riskless asset, which pays fixed interest R > 1 for each unit of saved good or alternatively
they can use a risky asset. Agents pay price pt to purchase the asset at time t, and when
old they obtain the payoff yt+1 = pt+1 + dt+1. This is given by the price at which they can
sell the asset pt+1 plus a dividend claim dt+1 which is assumed to be constant plus normal
white noise. In our specific setting we will assume it constantly equal to 0 so that going
forward yt+1 = pt+1. Agents need to chose their demand of the risky asset, defined by zdt ,
in order to maximize their utility, subject to the following budget constraint

ct+1 = R(w0 − ptz
d
t ) + zdt pt+1.

All agents assume that ct+1 is normally distributed, then their utility maximization
problem, is equivalent to

max
{zdt }

(
−exp

{
−aEt(ct+1) +

a2

2
Vt(ct+1)

})
. (11)

Exploiting the budget constraint we have that

Et(ct+1) = R(w0 − ptz
d
t ) + zdt Et(pt+1),

and
Vt(ct+1) = (zdt )

2Vt(pt+1).

Then the optimal choice of the risky asset must satisfy the first order condition of equation
(11).

zdt =
Et(pt+1)−Rpt

aVt(pt+1)
.

To get a solution for the price pt we impose the equilibrium condition that demand
must equal supply zst . Finally we assume net supply of the risky asset is 0 to get

Et(pt+1)−Rpt
aVt(pt+1)

= 0. (12)

From equation (12) we can notice that if agents had homogenous beliefs, therefore shar-
ing the same expected value and variance of the asset, the pricing equation would be
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Rpt = Et(pt+1). (13)

Equation (13) has two class of solutions, usually referred to as fundamentalist and rational
bubble solution. The fundamental price is pt ≡ p̄ = 0 in each time step, where r = R− 1 is
the net free-rate. Whereas the rational bubble price is p̃t = ζtR

−t where ζt is any martingale
process. Now consider J different types of agents, with different expectation formation
processes regarding the future price of the risky asset. The equilibrium pricing equation
(12) becomes

J∑
j=1

(
nj,t ·

Fj,t(pt+1)−Rpt
aVj,t(pt+1)

)
= 0,

where Fj,t(pt+1) and Vj,t(pt+1) indicate the subjective expectation and variance of agent
j and nj,t represents the fraction of agents using strategy j. Finally we make the assumption
of constant beliefs on variance: Vj,t(pt+1) = σ2

p, ∀j . 6 With this assumption the equilibrium
price is given by

Rpt =
J∑

j=1

nj,t · Fj,t(pt+1).

Fractions are updated every period according to a fitness measure that is public knowl-
edge and is given by profits or returns in excess of the risk-free rate are given by

πj,t = (pt −Rpt−1) z
d
t−1,

finally assuming that aσ2
p = 1 we get the expression in equation (2).

B Proofs

B.1 Proof of Lemma 1 (See page 7)

Steady states of the system must solve

Rp = n1gp+ (1− n1)b,

where

n1 =
1

1 + exp{β(p−Rp)(b− gp)}
,

and satisfy the constraint on the parameters b > 0, g > 0, R > 1. When β = 0 then n1 = 1
2

for all p which implies that p = b
2R−g . The stability of the system can be determined by

6Although we shall overlook this second-order effect, it should be noted that heterogeneity in conditional
expectations does, in fact, cause heterogeneity in conditional variance. Again we refer to Brock and Hommes
(1998) for a more thorough discussion.
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studying the first order difference equation

pt =
g

2R
pt+1 +

b

2R
,

and imposing ∣∣∣∣ dptpt−1

∣∣∣∣ = ∣∣∣ g

2R

∣∣∣ < 1.

Since we are working under the assumption that g > 0 and R > 1 the steady state is then
locally stable for g < 2R.

When β = +∞ the price function is piecewise defined as

pt =


g
Rpt−1 for ∆πt−1 < 0

g
2Rpt−1 +

b
2R for ∆πt−1 = 0

b
R for ∆πt−1 > 0

where ∆πt−1 = (pt−1−Rpt−2)(b−gpt−3), is the difference in realized profits between the
bias traders and the trend following traders. To obtain the steady states and their stability
we can then proceed by cases

(i) ∆πt−1 < 0. Then a steady state p must satisfy the following pair of equations{
p = g

Rp

(p−Rp)(b− gp) < 0

which has solution if and only if g = R with p < b
R . The steady state stability is

determined by ∣∣∣∣ dptpt−1

∣∣∣∣ = ∣∣∣ g
R

∣∣∣ = 1,

therefore the steady state is locally unstable.

(ii) ∆πt−1 = 0. Then a steady state p must satisfy the following pair of equations{
p = g

2Rp+
b
2R

(p−Rp)(b− gp) = 0

Since b > 0, a solution in this case exists if and only if g = R which then leads to
p = b/R = b/g. The stability of this solution is given by∣∣∣∣ dptpt−1

∣∣∣∣ = ∣∣∣ g

2R

∣∣∣ = ∣∣∣∣12
∣∣∣∣ < 1,

which implies that the steady state is locally stable.

(iii) ∆πt−1 > 0. Then a steady state p must satisfy the following pair of equations{
p = b

R

(p−Rp)(b− gp) > 0
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The solution p = b
R can be sustained only if g > R since b > 0. The stability of the

steady state is regulated by ∣∣∣∣ dptpt−1

∣∣∣∣ = 0,

implying a locally stable steady state.

B.2 Proof of Lemma 2 (See page 10)

Steady states of the system must solve

Rp = n1gp+ n2b,

where

n1 =
exp{βπ1}

exp{βπ1}+ exp{βπ2}+ exp{βπ3}
, n2 =

exp{βπ2}
exp{βπ1}+ exp{βπ2}+ exp{βπ3}

,

and

π1 = (p−Rp)(gp−Rp), π2 = (p−Rp)(b−Rp), π3 = (p−Rp)(−Rp).

For β = 0 then n1 = n2 =
1
3 , which implies p = b

3R−g . The stability of the system can be
determined by studying the first order difference equation

pt =
g

3R
pt+1 +

b

3R
,

and imposing ∣∣∣∣ dptpt−1

∣∣∣∣ = ∣∣∣ g

3R

∣∣∣ < 1.

Since we are working under the assumption that g > 0 and R > 1 the steady state is then
locally stable for g < 3R.

When β = +∞ the price function is piecewise defined as

pt =



g
Rpt−1 for π1,t−1 > π2,t−1 and π1,t−1 > π3,t−1

b
R for π2,t−1 > π1,t−1 and π2,t−1 > π3,t−1

0 for π3,t−1 > π1,t−1 and π3,t−1 > π2,t−1
g
2Rpt−1 for π1,t−1 = π3,t−1 > π2,t−1

b
2R for π2,t−1 = π3,t−1 > π1,t−1

g
3Rpt−1 +

b
3R for π1,t−1 = π2,t−1 = π3,t−1

As before we proceed by analysing the multiple cases:

(i) π1,t−1 > π2,t−1 and π1,t−1 > π3,t−1. Then a non-negative steady state p must
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satisfy the following system of equations
p = g

Rp

(p−Rp)(gp−Rp) > (p−Rp)(b−Rp)

(p−Rp)(gp−Rp) > −Rp(p−Rp)

p ≥ 0

The system however has no solution since the first equation implies either p = 0 or
g = R. In both cases equations two and three are not satisfied as they would hold
with equality.

(ii) π2,t−1 > π1,t−1 and π2,t−1 > π3,t−1. Then a positive steady state p must satisfy the
following system of equations

p = b
R

(p−Rp)(b−Rp) > (p−Rp)(gp−Rp)

(p−Rp)(b−Rp) > −Rp(p−Rp)

p ≥ 0

which has no solution since the third equation is not satisfied for b > 0 and p ≥ 0.

(iii) π3,t−1 > π1,t−1 and π3,t−1 > π2,t−1. Then a positive steady state p must satisfy the
following system of equations

p = 0

−Rp(p−Rp) > (p−Rp)(gp−Rp)

−Rp(p−Rp) > (p−Rp)(b−Rp)

p ≥ 0

which has no solution since the second and third equations are not satisfied.

(iv) π1,t−1 = π3,t−1 > π2,t−1. Then a positive steady state p must satisfy the following
system of equations 

p = g
2Rp

−Rp(p−Rp) = (p−Rp)(gp−Rp)

−Rp(p−Rp) > (p−Rp)(b−Rp)

(p−Rp)(gp−Rp) > (p−Rp)(b−Rp)

p ≥ 0

which has no solution since the first equation implies either p = 0 which contradicts
the third and fourth equation or g = 2R which contradicts the second equation.

(v) π2,t−1 = π3,t−1 > π1,t−1. Then a non-negative steady state p must satisfy the follow-

32



ing system of equations

p = b
2R

−Rp(p−Rp) = (p−Rp)(b−Rp)

−Rp(p−Rp) > (p−Rp)(gp−Rp)

(p−Rp)(b−Rp) > (p−Rp)(gp−Rp)

p ≥ 0

which has no solution since the first equation contradicts the second.

(vi) π1,t−1 = π2,t−1 = π3,t−1. Then a non-negative steady state p must satisfy the follow-
ing system of equations

p = g
3Rp+

b
3R

−Rp(p−Rp) = (p−Rp)(b−Rp)

−Rp(p−Rp) = (p−Rp)(gp−Rp)

(p−Rp)(b−Rp) = (p−Rp)(gp−Rp)

p ≥ 0

which has no solution since the first equation implies p = b
3R−g and the second would

imply b = 0.

B.3 Proof of Lemma 3 (See page 12)

Steady states of the system must solve

Rp̄ = n̄1gp̄+ n̄2b+ n̄3p̄,

where

n̄1 =
exp{βπ1}

exp{βπ1}+ exp{βπ2}+ exp{βπ3}
, n̄2 =

exp{βπ2}
exp{βπ1}+ exp{βπ2}+ exp{βπ3}

,

and

π1 = (p̄−Rp̄)(gp̄−Rp̄), π2 = (p̄−Rp̄)(b−Rp̄), π3 = (p̄−Rp̄)(p̄−Rp̄).

For β = 0 then n1 = n2 = 1
3 , which implies p = b

3R−g−1 . The stability of the system
can not be directly analysed by the application of dynamical systems theory because of the
‘forward looking’ element pt+1.

When β = +∞ the price function is piecewise defined as
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pt =



g
Rpt−1 for π1,t−1 > π2,t−1 and π1,t−1 > π3,t−1

b
R for π2,t−1 > π1,t−1 and π2,t−1 > π3,t−1

pt+1

R for π3,t−1 > π1,t−1 and π3,t−1 > π2,t−1
g
2Rpt−1 +

pt+1

2R for π1,t−1 = π3,t−1 > π2,t−1

b
2R + pt+1

2R for π2,t−1 = π3,t−1 > π1,t−1
g
3Rpt−1 +

b
3R ++pt+1

3R for π1,t−1 = π2,t−1 = π3,t−1

As before we proceed by analysing the multiple cases:

(i) π1,t−1 > π2,t−1 and π1,t−1 > π3,t−1. Then a non-negative steady state p must
satisfy the following system of equations

p = g
Rp

(p−Rp)(gp−Rp) > (p−Rp)(b−Rp)

(p−Rp)(gp−Rp) > (p−Rp)(p−Rp)

p ≥ 0

The system however has no solution since the first equation implies either p = 0 or
g = R. In both cases equations two and three are not satisfied as they would hold
with equality.

(ii) π2,t−1 > π1,t−1 and π2,t−1 > π3,t−1. Then a non-negative steady state p must
satisfy the following system of equations

p = b
R

(p−Rp)(b−Rp) > (p−Rp)(gp−Rp)

(p−Rp)(b−Rp) > (p−Rp)(p−Rp)

p ≥ 0

which has no solution since the third equation is not satisfied for b > 0 and p ≥ 0.

(iii) π3,t−1 > π1,t−1 and π3,t−1 > π2,t−1. Then a non-negative steady state p must
satisfy the following system of equations

p = p
R

(p−Rp)(p−Rp) > (p−Rp)(gp−Rp)

(p−Rp)(p−Rp) > (p−Rp)(b−Rp)

p ≥ 0

which has no solution since the first equation implies either p = 0 or R = 1.

(iv) π1,t−1 = π3,t−1 > π2,t−1. Then a non-negative steady state p must satisfy the follow-
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ing system of equations

p = g
2Rp+

p
2R

(p−Rp)(p−Rp) = (p−Rp)(gp−Rp)

(p−Rp)(p−Rp) > (p−Rp)(b−Rp)

(p−Rp)(gp−Rp) > (p−Rp)(b−Rp)

p ≥ 0

which has no solution since the first equations imply either p = 0 which contradicts
the third and fourth equation or g = 2R − 1 which contradicts the second equation
that implies g = R.

(v) π2,t−1 = π3,t−1 > π1,t−1. Then a positive steady state p must satisfy the following
system of equations 

p = b
2R + p

2R

(p−Rp)(p−Rp) = (p−Rp)(b−Rp)

(p−Rp)(p−Rp) > (p−Rp)(gp−Rp)

(p−Rp)(b−Rp) > (p−Rp)(gp−Rp)

p ≥ 0

which has no solution since the first equation implies p = b
2R−1 and the second p = b

which is possible only for R = 1.

(vi) π1,t−1 = π2,t−1 = π3,t−1. Then a positive steady state p must satisfy the following
system of equations 

p = g
3Rp+

b
3R + p

3R

(p−Rp)(p−Rp) = (p−Rp)(b−Rp)

(p−Rp)(p−Rp) = (p−Rp)(gp−Rp)

(p−Rp)(b−Rp) = (p−Rp)(gp−Rp)

p ≥ 0

which has no solution since equations two to four imply either p = 0 which contra-
dicts equation one or p = b = gp implying g = 1. Then the first equation would read
3Rb = 3b which implies R = 1.

B.4 Eigenvalues for the two type model

It is convenient to rewrite the model in (8) and (9) transforming it from a univariate third
order difference equation to a first order difference equation with three states. We use the
following change of variables (pt, pt−1, pt−2) = (xt+1, wt+1, zt+1) to rewrite the model as
the following system:
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xt+1 =

g
Rxt {1 + exp[β(xt −Rwt)(b− gzt)]}−1 + b

R

(
1− {1 + exp[β(xt −Rwt)(b− gzt)]}−1

)
wt+1 = xt

zt+1 = wt

Taking first order derivatives we get the following Jacobian matrix A B C

1 0 0

0 1 0

 ,

with

A =

((
βg2zt − bβg

)
xt − bβgzt + g + b2β

)
eβ·(b−gzt)(xt−Rwt) + g

R ·
(
eβ·(b−gzt)(xt−Rwt) + 1

)2 ,

B = −β · (gxt − b) (gzt − b) eβ·(b−gzt)(xt−Rwt)(
eβ·(b−gzt)(xt−Rwt) + 1

)2 ,

C =
βg · (xt −Rwt) (gxt − b) eβ·(xt−Rwt)(b−gzt)

R ·
(
eβ·(xt−Rwt)(b−gzt) + 1

)2 .

To evaluate the stability of the steady state, one can observe the eigenvalues of the
Jacobian matrix, which in this case are given by:

λ1 =
3
√

2A3 + 3
√
3
√
4A3C −A2B2 + 18ABC − 4B3 + 27C2 + 9AB + 27C

3 3
√
2

−

−
3
√
2
(
−A2 − 3B

)
3

3
√
2A3 + 3

√
3
√
4A3C −A2B2 + 18ABC − 4B3 + 27C2 + 9AB + 27C

+
A

3

λ2 = − 1

6 3
√
2
(1−i

√
3)

3

√
2A3 + 3

√
3
√
4A3C −A2B2 + 18ABC − 4B3 + 27C2 + 9AB + 27C+

+
(1 + i

√
3)

(
−A2 − 3B

)
3 · 22/3 3

√
2A3 + 3

√
3
√
4A3C −A2B2 + 18ABC − 4B3 + 27C2 + 9AB + 27C

+
A

3

λ3 = − 1

6 3
√
2
(1+i

√
3)

3

√
2A3 + 3

√
3
√
4A3C −A2B2 + 18ABC − 4B3 + 27C2 + 9AB + 27C+

+
(1− i

√
3)

(
−A2 − 3B

)
3 · 22/3 3

√
2A3 + 3

√
3
√
4A3C −A2B2 + 18ABC − 4B3 + 27C2 + 9AB + 27C

+
A

3
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B.5 Eigenvalues for the model with fundamentalist

As before we rewrite the model as the “following” system:
xt+1 =

g
Rxtn1,t +

b
Rn2,t

wt+1 = xt

zt+1 = wt

with
n1,t =

exp[β(xt −Rwt)(gzt −Rwt)]

Zt
,

n2,t =
exp[β(xt −Rwt)(byt−3 −Rwt)]

Zt
,

n3,t =
exp[β(xt −Rwt)(−Rwt)]

Zt
,

Zt = exp[β(xt−Rwt)(gzt−Rwt)]+exp[β(xt−Rwt)(byt−3−Rwt)]+exp[β(xt−Rwt)(−Rwt)].

Taking first order derivatives we get the following Jacobian matrix: A B C

1 0 0

0 1 0


A =

eRβw·(x−Rw) ·
(
ge2β·(gz−Rw)(x−Rw)+Rβw·(x−Rw) + eβ·(gz−Rw)(x−Rw) ·

(((
βg2z − bβg

)
x− bβgz + g + b2β

)
eβ·(b−Rw)(x−Rw)+Rβw·(x−Rw) + βg2zx+ g

)
+ b2βeβ·(b−Rw)(x−Rw)

)
R ·

(
eβ·(gz−Rw)(x−Rw)+Rβw·(x−Rw) + eβ·(b−Rw)(x−Rw)+Rβw·(x−Rw) + 1

)2 ,

B = −
βeRβw·(x−Rw) ·

(
eβ·(x−Rw)(gz−Rw) ·

(((
g2x− bg

)
z − bgx+ b2

)
eβ·(b−Rw)(x−Rw)+Rβw·(x−Rw) + g2xz

)
+ b2eβ·(b−Rw)(x−Rw)

)(
eβ·(x−Rw)(gz−Rw)+Rβw·(x−Rw) + eβ·(b−Rw)(x−Rw)+Rβw·(x−Rw) + 1

)2 ,

C =
βg · (x−Rw)

(
(gx− b) eβ·(b−Rw)(x−Rw)+Rβw·(x−Rw) + gx

)
eβ·(x−Rw)(gz−Rw)+Rβw·(x−Rw)

R ·
(
eβ·(x−Rw)(gz−Rw)+Rβw·(x−Rw) + eβ·(b−Rw)(x−Rw)+Rβw·(x−Rw) + 1

)2 .

The general form of the eigenvalues computed in section (B.4) is still valid, so that we
can obtain them by simply replacing the formulae for A, B and C.

C Steady States

In the figure below we numerically solve for the implicit function defining the steady state
of the systems. To obtain a plot in three dimension we fix the value of the parameters
R = 1.01 and b = 1 and vary the parameters g and β.
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D Numerical errors for the EP method

Figure 12: Sum of absolute errors

E Neural Network

The network architecture we use is the following.

Hidden Layers Hidden Layer size Activation Loss Optimizer epochs

1 16 tanh mse adam 1000

An overview of the Neural Network is given below, while we refer to Goodfellow,
Bengio and Courville (2016) for full details on this kind of models.

Input Layer The input layer passes the input data to the next layer. Denote the input
as X ∈ Rk, where k is the size of the input vector.

Hidden Layer The first dense layer transforms the input X using a weight matrix W1 ∈
Rk×16, a bias vector b1 ∈ R16, and applies the tanh activation function. The operation can
be described by the equation:

H = tanh(W⊤
1 X+ b1)
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Here, H ∈ R16 is the output of the hidden layer, which becomes the input to the next layer.
Output Layer The output layer further transforms the output of the hidden layer H us-

ing another weight matrix W2 ∈ R16×1, a bias term b2 ∈ R, and applies a linear activation
function. The operation for the output layer is given by:

Y = W⊤
2 H+ b2

Y ∈ R is the scalar output of the network, that approximates the state variable. The input
vector in section (4) is of size k and contains pt−1, pt−2 and pt−3 while the target is pt+1. In
section (5) the size is equal to 9 and the input vector contains xt−1, xt−2, xt−3, wt−1, wt−2,
wt−3, Rt, Rt−1, Rt−2, that is lags of the Bitcoin in deviation form, of the BiTSI index and of
the time varying risk-free rate.

F Stationarity tests

Figure 13: Variable for the estimation

We test the presence of a unit root for the two time series related to the percentage devia-
tion form the moving average fundamental by means of the augmented Dickey–Fuller test
(ADF). The associated p-values are: 1.27e-06 for xt and 0.037 for wt−1. We can therefore
reject the null hypothesis of unit root of the ADF.
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G Robustness to different windows

In this section we check the robustness of the estimation to a different choice of the window
length in the moving average fundamental value. We repeat the analysis for each value
between 1 and 99. A window choice of 1 implies that we are actually estimating the model
on daily returns. For each choice we re estimate the two types model with trend followers
and bias and plot the point estimate of the parameters with associated standard errors in
the top panel of Figure 14, the dashed line is at 0. The bottom panel shows the p-value for
the F-statistic of significance of the non-linear model with respect to the linear one and the
adjusted r-squared. The dashed line marks the 5% significance level.

Figure 14: Effect of different windows

Daily returns (window length = 1) are as one would expect unpredictable, with an ad-
justed r-squared close to 0. For a window length smaller then 25 the intensity of choice β

is not significantly different from 0, For values lower then 7 we get estimates ranging so
much that we had to impose limits on the axis in order to obtain a meaningful visualiza-
tion. For values higher then 30 however we start to observe results that are quantitatively
similar with high R-squared, positive and significant βs and preference for the non-linear
model as conveyed by the p-value of the F-test.

H Bootstrapped standard errors

In this section we show the robustness of the standard errors by computing them via
bootstrap. The p-value of the test for Conditional Heteroscedasticity does not reject ho-
moskedasticity in the residuals. Nonetheless we follow the approach of Goncalves and
Kilian (2004). That is for 2000 bootstrap replications we generate a series of pseudo resid-
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uals by multiplying the original residuals by a random number drawn from a Standard
Normal Distribution We then create a pseudo time series using the associated non-linear
model by replacing the actual residuals with the pseudo residuals. Finally we re-estimate
the model using the pseudo time series to obtain a new set of parameter estimates and
report the values of the associated confidence interval at the .99 percent level in Table 4.

Table 4: 99% bootstrapped confidence intervals

g b β

Trend chasers vs pure bias: [1.87 1.94] [0.41 0.76] [0.03 2.01]
Tc vs B vs Fundamentalist: [2.81 2.9] [0.61 1.14] [0.03 1.0]
Tc vs B vs Rational Expectations: [1.87 1.96] [0.58 1.1] [0.12 2.85]
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