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Abstract

This paper investigates the role of wealth-dependent information stickiness in the
transmission of monetary policy in a Heterogeneous Agent New Keynesian (HANK)
model. Using survey data, I provide empirical evidence that households do not form
expectations according to the full-information rational expectations (FIRE) hypothesis
but instead exhibit stickiness in updating their information, with wealthier households
updating more frequently. I evaluate the effect of this evidence on macroeconomic dy-
namics using a quantitative model. My findings reveal that inequality significantly
affects the aggregate responses to monetary shocks. Specifically, models that neglect
heterogeneity in information updating underestimate both the magnitude and the de-
lay of the peak response to monetary policy shocks. Estimating the model by matching
simulated impulse response functions (IRFs) to empirical ones shows that stickiness is
crucial for accurately capturing the dynamics observed in the data.

1 Introduction

A recently expanding literature in macroeconomics focuses on building models that are
consistent not only with macro aggregates but also with micro evidence. One of the main
empirical finding on the aggregate level, relates to the shape of output response to mon-
etary policy shocks. An identified monetary policy shock, as in Romer and Romer (2004)
induces a hump-shaped response of output. On the micro side, the literature has instead
documented elevated and peaked on impact marginal propensities to consume (MPCs)
out of transitory income shocks (Fagereng, Holm and Natvik, 2021).

Models that focus on matching aggregate evidence have typically used New Keynesian
models with a representative agent (RANK). To account for the delayed response of macro
aggregates to shocks, these models are usually enriched with habits in the consumption
behavior of households and frictions, such as sticky prices, on the firm side as in Chris-
tiano, Eichenbaum and Evans (2005) or Smets and Wouters (2007). An alternative approach
has been to introduce deviations from the full-information rational expectations (FIRE) as-
sumption. The main motif used by the literature has been that of rational inattention, as
in Carroll (2003), which argues that agents may face an information processing constraint
and therefore not be able to process all available information immediately. Mackowiak
and Wiederholt (2009), Mackowiak and Wiederholt (2010), and Zorn (2021) have shown
that RANK models with some form of rational inattention can match the hump shape of

the impulse response function.
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To deal with micro-side evidence, the literature has instead focused on models with
incomplete markets, and idiosyncratic productivity risk, giving rise to wealth heterogene-
ity. This combination prevents some agents to achieve perfect consumption smoothing
and helps deliver heterogenous MPCs. The incorporation of these elements with New
Keynesian models has given rise to the so-called Heterogeneous Agent New Keynesian
(HANK) models. The implications of these models, as in McKay, Nakamura and Steinsson
(2016) and Kaplan, Moll and Violante (2018), for monetary policy, differ from the RANK
benchmark in the General Equilibrium transmission, which is mostly driven by indirect
effects (via income) rather than direct effects (via interest rates). With respect to the Rep-
resentative Agent setting, HANK models offer a solution to the forward guidance puzzle.
However, they do not provide a stark difference in the effect of a current monetary policy
shock on the economy.

Some recent papers have started to merge elements from the two traditions but have
done so in isolation from each other, assuming that the expectation formation process,
even if not fully rational, is uniform across the population and orthogonal to the state
space. This paper links the expectation formation process to wealth and studies the impli-
cations of this assumption for monetary policy transmission in a HANK model. The type
of bounded rationality I use is the sticky information framework, as in Mankiw and Reis
(2002) and Carroll et al. (2020). I use survey data, following the approach of Coibion and
Gorodnichenko (2015), to show that households do not form their beliefs according to the
FIRE assumption but display stickiness in incorporating new information. I then provide
evidence that this stickiness is lower in households with higher wealth.

I use the HANK model with sticky expectations to revisit the mechanisms through
which monetary policy is transmitted to the economy. First, by using a simple model, I
show that inequality now matters for the transmission of monetary policy even at the ag-
gregate level, and I show that using a RANK model with sticky expectations misses not
only the size but also the timing of the peak response. Second, I quantify the effect of
this departure from rationality by estimating a quantitative model by matching simulated
impulse responses to empirical ones for an identified Aruoba and Drechsel (2022) mone-
tary policy shock. I show that stickiness is necessary to match the empirical estimates and
that the FIRE version of the same model would overestimate the IRF of output by 0.4%
on impact and 16% cumulatively. Lastly I show that the model with sticky expectations
commands a lower reaction to shocks that are further away in the future, thus lowering
the forward guidance puzzle.

Relation to the literature. This paper relates to three main strands of literature. The first
one uses survey data to test deviations from the FIRE assumption. Coibion and Gorod-
nichenko (2012), Coibion and Gorodnichenko (2015) and the review in Coibion, Gorod-
nichenko and Kamdar (2018) have shown that nor households nor firms, are perfectly
rational in their expectation formation process and have argued about the incorportation
of this evidence in macroecnomic models. While generally information frictions have been

studied on an aggregate level, there are some works exploiting demographics data in sur-



vey data to study potential heterogeneity, with Madeira and Zafar (2015) being one of the
first work in this area. Cloyne, Ferreira and Surico (2020) show that the consumption re-
sponse to interest rates changes is higher in households with mortgages. While the mech-
anism highlighted in the paper is that of heterogeneity in MPCs, their findigns would be
consistent with the hypothesis of heterogeneous expectations aswell. Some recent works
incorporate survey evidence into structural models. Gallegos-Dago (2023b) studies the ef-
fect of dispersed information in a RANK model, and Gallegos-Dago (2023a) extends it to a
tractable HANK model in the flavour of Bilbiie (2024). Closer to this paper is Nord (2022)
who also finds heterogenous expectations driven by wealth, but argues for a model of be-
lief dispersion, with more disagreement being prevalent in low wealth households. While
the focus of that paper is on a partial equilibrium model of consumption and savings, I
focus on the general equilibrium implications.

The second strand of literature considers the implications of bounded rationality for
the transmission of monetary policy. Early contributions include Evans and Honkapohja
(2003) and Bullard, Evans and Honkapohja (2008) who focus on adaptive learning and
interested in the implications for determinancy of equilibrium. Peraphs a drawback of
this thoery of bounded rationality is that adaptive learning expectations are purely back-
ward looking. As in more recent year central banks have relied on forward guidance as
an alternative policy instrument, the stark result that adaptive learning would imply of no
effect of forward guidance is not appealing. To obtain a more realistic effect of forward
guidance, the literature has used information rigidities like information sparsity (Angele-
tos and Lian, 2018) or cognitive discounting (Gabaix, 2020) in a RANK setting and k-level
thinking (Farhi and Werning, 2019) or incomplete information (Angeletos and Huo, 2021)
in a HANK setting.

Lastly, the paper belongs to the expanding literature of hetergoeneous agents mod-
els being solved and estimated in sequence-space rather than in state-space, using the
methodology introduced by Auclert et al. (2021). The same authors have shown how to
adapt the methodology to deal with deviations from FIRE in Auclert, Rognlie and Straub
(2021) and other works have build on this to deal with belief disagreement (Guerreiro,
2023) or noisy information and diagnostic expectations (Bardoczy and Guerreiro, 2024). A
common assumption of these works is that the expectation formation process does not de-
pend on the state space and in particular on the wealth distribution. Methodologically this
paper proposes a way to solve and estimate models in which this assumption is relaxed.

Layout. The rest of the paper is structued as follows. Section 2 presents the empirical evi-
dence of wealth dependent stickiness. Section 3 presents the simple model and highlights
the main mechanisms at play. Section 4 presents the quantitative model and the estimation
exercise. Section 5 concludes.



2 From uniform to wealth dependent stickiness

I begin by laying out the classical sticky information framework. The economy is popu-
lated by a continuum of agents on the unit interval. Their forecast regarding a macroeco-

nomic variable is given by

Fi(xin) = { E(z¢4n) withp=(1-10) .

Fi_1(x4yp) with p=0

Equation (1) says that in each period an agent updates their information set with prob-
ability (1 — 6), in which case they have rational expectations. With probability 6, they do
not update their information set and stick with their last forecast. The economy as a whole

has expectations that, on average, are given by

1 1
Fy(xeqn) = /0 (1= 0)E¢(w1p)di +/0 OF,—1(zen)di = (1 — O)Ei(esn) + OF 1 (ze4n). (2)

Note that this holds because ¢ and hence F(z;4) are independent of ¢ and so constant
across the population. To test whether FIRE are met in survey data one can then use the
fact that a rational forecast needs to satisfy

Et(Tt4n) = Tign — €t+ht 3)

with e; 1, ; being the forecasting error and uncorrelated with information dated t or earlier.

Combining equations (2) and (3) one gets

Fi(xeyn) = (1 — 0)(@pgn — etent) + 0F—1(xean), (4)
and rearranging
W = Ttth = Coht+ T HFt—l(ﬂftJrh)a )
that is g
Fy(zi4n) + mFt(xt-ﬁ-h) = Tiyh — Cttht T mthl(J?tJrh)» (6)
and finally
Toyn — Fr(@egn) = %(Ft(xt—&-h) — Fo1(@t4n)) + €4t )

Equation (7) is testable on data since one can regress the forecasting error on the forecast
revision (Fy(x¢4p) — Fy—1(x¢+p)). This can be done using Ordinary Least Squares (OLS) if
the survey elicits forecasts at different moments for the same variable. The null hypothesis
of FIRE is met when the coefficient associated with the forecast revision is 0, which would
imply ¢ = 0 and no degree of stickiness.

I proceed by first replicating the baseline estimation in Coibion and Gorodnichenko
(2015) using data from the Survey of Professional Forecasters (SPF), the Livingston Survey



(LS), and the Michigan Survey of Consumers (MSC). I report the specific questions asked
in each survey in appendix A. In the first, the target variable is GDP /GNP inflation forecast
for horizons starting at the current quarter to four quarters ahead. For the LS, agents are
asked to forecast the CPI at six and twelve months ahead. The LS elicits forecasts at 6 and
12 months ahead, therefore t is the current semester. The SPF elicits forecasts for the next 4
quarters, therefore t is the current quarter. For both datatsets equation (7) can be estimated
directly. The MSC has monthly waves, but it is not possible to directly obtain forecast
revisions, since individuals are only asked to forecast the percentage change in prices for
the next 12 months. Specifically, the regression that one could run is

Tevn — Fi(zen) = ¢+ B(Fy(xiyn) — Fi—1(244n—1)) + errory, (8)

but now notice that error; includes not only the rational forecast error but also the
term S(Fi—1(z¢) — Fi—1(2444)) and is thus not orthogonal to the regressor. As a result,
this model can not be estimated by OLS. In this case Coibion and Gorodnichenko (2015)
suggests using oil price innovations as an instrument for the forecast revision. Oil price
innovations are computed log-differences in the oil price. The estimates for the MSC are
then obtained by two-stage least squares (2SLS) with quarterly frequency. To compute the
forecast error for all surveys I use the first release of the target variable from the Federal
Reserve Bank of Philadelphia Real-Time Data Set, as suggested by Croushore and Stark
(2003). Table 1 reports the results.

Table 1: Information Rigidity for Households and Professionals

LS SPF MSC

0.25 -0.06 -1.04

Constant

(0.16) (0.76) (0.00)

. 0.92 0.95 1.21

Forecast Revision
(0.00) (0.01) (0.00)
Sample 1969:6 - 2020:12 1969:1 - 2022:4 1982:2 - 2023:3
Observations 103 203 166
Instrument - - QOil Price Innovations
F stat first stage - - 87.31

Note: The table reports estimates of equation (7) using OLS for the Livingston Survey (LS), the Survey of
Professional Forecasters (SPF), and the 2SLS for the Michigan Survey of Consumers (MSC). P-values
obtained from Newye-West robust standard errors are in parentheses.

From equation (7), one can directly retrieve the degree of stickiness from the estimated
regression coefficient as 6 = %, resulting in § = 0.48 in the LS, § = 0.49 in the SPF,
and 0 = 0.50 in the MSC. As discussed this result is derived under the assumption of
homoscedasticity of the updating probability across the population.

In what follows I am going to provide evidence of heterogeneity in the updating prob-
ability across the wealth distribution. The MSC provides demographic information on
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multiple dimensions, including education level, age of the respondents, and stock hold-
ings. Although the latter is not a direct measure of wealth, it is likely highly correlated
with it'. My first step is to partition the dataset into different demographic groups and
then estimate equation (7) for each group. For this analysis I move to a monthly frequency,
exploiting the monthly waves of the MSC to obtain a larger sample and more powerful
tests.

Table 2 reports the results for the whole sample and for the top 10% and bottom 90%
of the wealth distribution. The first observation is that the estimated coefficient on the
whole sample is higher than in the quarterly estimation. The theoretical model implies
that, defining 6,,, as the stickiness parameter at the monthly level, at the quarterly level one
has 6, = 62,. Indeed the 99% confidence interval at the monthly level is 6,, € [0.52,0.83]
which would give a quarterly stickiness parameter of §, € [0.14,0.58], that includes the
quarterly point estimate obtained by the OLS coefficient in table 1 of 6, = 0.55. Second, the
estimated coefficient for the top 10% is both lower and statistically less significant than for
the whole sample and the bottom 90%. This is in line with the hypothesis that wealthier
individuals are more likely to update their information set. Third, I check whether the
coefficients between the top 10% and the bottom 90% are statistically different, by reporting
the value of the z-statistic of the coefficient difference.

Table 2: Information Rigidity for different Wealth Levels

All Top 10% Bottom 90%
-0.78 -0.33 -0.99
Constant
(0.00) (0.00) (0.00)
.02 1.08 2.74

Forecast Change 3.0

(0.00) (0.06) (0.00)

Sample 1986:03 - 2023:06 1990:01 - 2023:06 1990:01 - 2023:06
Observations 306 306 306
Instrument Oil Price Innovations Qil Price Innovations Qil Price Innovations

F stat first stage 39.02 24.68 29.98
p-val difference - - 0.09

Note: The table reports estimates of equation (7) by 2SLS for the Michigan Survey of Consumers (MSC) at
monthly frequency. P-values obtained from Newey-West robust standard errors are in parentheses.

The effect of Age and Education It is well known that wealth is highly correlated with
both age and education. Older individuals might update their information set more often
as they have lived through more business cycles and could have a better understanding of
the economy. Similarly, more educated households might be better able to process relevant
information and, therefore, update their information set more often. One might therefore
conjecture that the result obtained in table 2 is driven by these two variables. To test for this
hypothesis I repeat the analysis by constructing different subgroups. For both variables,

'See for example Nord (2022)



I need to consider large bins to have enough observations in each group. For age, I pool
individuals into three age groups: under 35 years old, between 35 and 65, and above 65.
For education, I consider four groups: individuals with a high school diploma, individu-
als who attended college but did not graduate, individuals with an undergraduate degree,
and individuals with postgraduate education. Figure 1 reports the point estimate and the
90% confidence interval for each group. The results confirm the role of wealth as the main
driver of heterogeneity. First, all the estimates of wealth groups in the top 10% are not
statistically different from zero, suggesting no degree of stickiness for these groups. Sec-
ond the differences among coefficients for the different age and education groups are not
statistically significant. The only exception is between the group of individuals younger
than 35 and older than 65 in the top 10% of the wealth distribution. However this result is
more the byproduct of a negative estimated point estimate for the younger group, which
is in contrast with the underlying theory. In fact, there are only 295 observations in this
subgroup, which might not be enough to obtain a reliable estimate.
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Figure 1: The role of age and education

3 Model

I begin by laying out the simple model which I use to explore the implications of wealth

related stickiness. The model is purposely stylized to highlight the main mechanisms at
play.

3.1 Households

The economy is populated by a continuum of households that is heterogeneous along two
dimensions: wealth and idiosyncratic productivity. Household i € [0, 1] solves

Cit,Qit

max[Eq Z B (uleir) — v(ng))
= ©)

st cirtap < (1+71)ai—1 + zit

it > a



o1
Utility from consumption and disutility from labor are given by u(c) = ‘f_? and

v(n) = %. o and ¢ are the elasticity of intertemporal substitution and the Frisch
elasticity and ( is the disutility of labor. z; = (1 — 7)y;: is post tax real income, and
Yir = %eitnit is labor income. The idiosyncratic productivity e;; follows a Markov chain
with transition matrix II¢ and is normalized such that E;(e;s) = 1. Households face a

borrowing constraint a and the real interest rate is r;.

3.2 Firms

A representative and perfectly competitive firm operates using a linear production tech-
nology:
Y;ﬁ = XtN ty (10)

where Y} represents aggregate output, V; is the level of aggregate labor, and X; captures

productivity. Prices are flexible, and real wage is given by:

_ W X;. (11)

wt—?—
t

Then inflation, 7; = log(P;/P;—1) is given by:
T = 7#1} — log(Xt/Xt_l), (12)

where 7}’ = log(W;/W;_1) is wage inflation.

3.3 Labor market

Following the approach of Auclert, Rognlie and Straub (2024) and early works by Schmitt-
Grohé and Uribe (2005) and Erceg, Henderson and Levin (2019) I model the labor market
with sticky wages?. A continuum of unions indexed by k € [0, 1] hires households and
aggregates the efficient hours of work supplied to the union into a specific task Nyt =
[ einiidi. The different union supplies are then aggregated into the total labor supply
by a competitive labor market-packer with the constant elasticity of substitution (CES)

1 e—1 ﬁ
N = ( / N dk> , (13)
0

and the total supply is sold to the representative firm at the wage W;. I introduce nominal

aggregator

rigidities by assuming that unions face quadratic adjustment costs in changing the nominal

1 2
2 Jo \ Wk
Using sicky prices and flexible wages, as common in the New Keynesian literature, leads to an implausible

result when embedding heterogenous agents into the model as it would imply countercyclical profits. I refer
to Broer et al. (2020) and Auclert, Rognlie and Straub (2024) for a broader discussion

wage




In each period unions set a uniform wage and allocate hours uniformly across their work-
ers, so that the efficient amount of worked hours [ e;n;di is equal to the aggregate N;.
All unions are symmetric so in equilibrium they set the same wage W;. Under these as-
sumptions, the linearized wage Phillips curve can be derived as in Appendix C and given

by
T =k (07 8+ ¢ 0y — (G — 7 — ) + BBi(misa), (14)
where ¢;, 7y and 3, are the log-deviations of consumption, labor, and output, from their
steady state values, and 73 = dr;/(1 — 7) and &, is the slope of the Phillips curve.
3.4 Government

The government chooses the path of government spending G;, debt B; and taxes 7; to
satisfy the government budget constraint

By =(1+1m)Bi-1+ G —Ti, (15)

with T; = 7;Y; and where for now I work under the assumption that spending is set
exogenously, bonds are fixed at the level B and taxes adjust to satisfy the budget constraint.

3.5 Monetary authority

The monetary authority sets the nominal interest rate according to a Taylor rule

it =1+ Gy + €4, (16)

in which r is the natural real interest rate, ¢ is the response of the nominal interest rate

to inflation, and ¢; is a monetary policy shock.

3.6 Equilibrium

Aggregate quantities are given by

1 1
Ct = / Citdi, At = / aitdi. (17)
0 0

Then given initial conditions for nominal wage, price level, government debt, and the
initial distribution of households over assets and productivity, and the exogenous path of
government spending, the equilibrium is a sequence of prices, quantities, and allocations
such that households, firms, and unions optimize, the government budget constraint and
the monetary policy rule are satisfied, and markets clear:

Ci + Gy =Y,

18
Ay = B. (19



3.7 Beliefs

The model layout so far leverages the assumption that beliefs satisfy FIRE. Following the
empirical evidence in section 2 I model households with sticky expectations. With re-
spect to the general framework which I laid down so far I make the following additional
assumptions. First, I assume that all households are aware of the steady state values of
all variables in the economy3. Second, I assume that households have sticky information
only with respect to aggregate variables and not idiosyncratic ones. Specifically, given that
households know the steady states, they have sticky information with respect to shocks to
aggregate variables. This is in line with the literature and eases the comparison with ex-
isting work. Moreover, while I tested directly for stickiness to aggregate variables, it is not
straightforward to test for stickiness to idiosyncratic shocks. Third, I follow Carroll et al.
(2020) and Auclert, Rognlie and Straub (2020) in assuming that once a shock hits the econ-
omy all agents become aware of it and update their information sets accordingly. The first
two assumptions together imply that the steady state of the model with sticky information
(Sticky HANK model hereafter), coincides with the FIRE one. Finally, and the main nov-
elty of this paper, I assume that the degree of stickiness is endogenously determined by
the wealth distribution. Since the survey data evidence is not enough to provide the full

functional form for the relationship between wealth and stickiness, I assume that they are

8(a) = (““*)7. (19)

a—+ c*

related by a power function

This functional form is convenient as it is determined by two parameters v and ¢* only
which can then be directly calibrated. Specifically, I will set them so that they match the
average stickiness, on a quarterly basis, of the top 10% of the distribution and the bottom
90%, by numerically solving the following system of equations

ago *\ Y
/ <“+C > dD(a) = 0.39
a a—+ c*

a *\ Y
/ (““*) dD(a) = 0.14,
as0 a—+c

where ag is the 90" percentile of the wealth distribution and the integral is taken over

(20)

the wealth distribution. The resulting parameters are c* = 0.06 and v = 0.24 which implies
an average stickiness in the population of 0.42. The steady state distribution of the wealth

dependent stickiness is displayed in figure

3.8 Solution Method

Solving the Sticky HANK model is challenging for two reasons. First, one has to deal
with household heterogeneity and incomplete markets. For this I rely on the contribu-
tion by Auclert, Rognlie and Straub (2021) by using the Sequence-Space representation

*Note that in the general model given by equation (1) this is true if the economy starts at the steady state
and F71(1Jt+h) =Tr_1
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Figure 2: Steady state distribution of the wealth dependent stickiness

of the model. Second, one has to take into account the deviation from FIRE imposed by
sticky expectations. For this I rely on the methodology developed in Auclert, Rognlie and
Straub (2020), Guerreiro (2023), and Bardoczy and Guerreiro (2024). However, a common
assumption of these works is that the deviations from FIRE are orthogonal to the state
variables of the model. As expectations in the Sticky HANK model are endogenously de-
termined by the wealth distribution, this assumption is not met. A core contribution of
this paper is a method to solve the model in this case. To build sequentially towards this
solution I proceed as follows. First, I show how to compute the steady state of the econ-
omy and then solve for first-order impulse responses to a shock in sequence-space thanks
to the methodology in Auclert, Rognlie and Straub (2021). As already remarked the steady
state of the Sticky HANK model and the FIRE one coincides. So without having to recom-
pute the steady state, I show how to compute imuplse-responses in the Stikcy HANK by
leveraging the way in which the FIRE equivalents are computed.

Steady State. In a steady state aggregate variables are constant over time. Since the steady
state is common knowledge, both under FIRE and sticky expectations, agents forecast per-
fectly aggregate variables. The challenging part with respect to a representative agent
economy is to solve the household side of the model. The dynamic programming problem
associated with the steady state is
V(a,e) = maxu(c) — v(n) + BE[V(d', )]e],

st. c+d=(1+ra+z, (21)
a > a.
The solution method proceeds as follows. First, the state space is discretized. In this

specific case, I use a grid with 500 points for the asset level and 7 possible values for the
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idiosyncratic productivity. The second step is to obtain the individual policies for con-
sumption and assets by backward iterating on the value function. The specific algorithm
used is the endogenous grid method by Carroll (2006), which iterates on the derivative of
the value function with respect to assets rather than on the value function itself. A key step
which I highlight because it will be important later on, is that in general, the asset policy
function is going to point houholds on an asset level that is not in the grid. To deal with
this, the solution method uses a lottery that assigns the households to either the closest
grid point below or above the optimal asset level. For an agent with desired asset a lying
between two grid points a; and a1, the probability of being assigned to a; is given by
mj= gt m (22)
aj+1 — a;
Finally given the steady state asset policy function and the exogenous Markov process
for idiosyncratic productivity, the steady state distribution can be computed by iterating

forward the distribution. Finally, aggregate steady state quantities can be computed as

C = /c(a, e)dD(a,e), A= /a'(a,e)dD(a,e), (23)

where D(a,e) is the distribution of households over assets and productivity. In steady

state the market clearing conditions are
C+G=Y, A=B, (24)

and a stationary equilibrium is then a sequence of prices, quantities, and allocations
such that households, firms, and unions optimize, the government budget constraint and
the monetary policy rule are satisfied, markets clear and the steady state constraint is sat-
isfied.

FIRE dynamics away from the steady state. The study of dynamics in response to shocks
hitting the economy leverages the Sequence-Space representation of the model. The object
of interest is the sequence of states of an aggregate endogenous variable, for example, con-
sumption in response to a change in an exogenous variable, for example, the real interest
rate. To denote infinite sequences I will use the notation {S;} = (S¢, St+1,St42...). The
shocks considered will be MIT shocks, which are shocks that come as a surprise at time 0
in an economy that is in a steady state. For sequences that start at time ¢t = 0, I will also
use exchangbly the notation S = (Sp, Sp, So-..) = {So}. Then to first-order, the output o
change in response to a change of an input i is given by

do = J%di, (25)

where 77 is the Jacobian summarizing the partial derivatives
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Clearly, the most challenging Jacobians to compute pertains to the household side of
the model. A brute force approach to compute them is to use the same method described
to obtain the steady state for each entry of the matrix. As an example assume that one
wishes to compute the partial derivative of consumption at date ¢ to the interest rate at
date s. Then one would do a backward iteration starting from a period 7" at which it is
assumed that the economy is back in the steady state. The backward iteration can handle
time-varying inputs and one can carry it out by setting r at the steady state except at date s,
in which it is shocked by an infinitesimal amount h After obtaining the respective policies
one would iterate forward the distribution and aggregate to compute C;. Then the partial

derivative would be given by
oC;  C—-C
ors  h

This method is computationally expensive as it requires 7' x T'backward and forward it-

(27)

erations for each Jacobian. One of the central contributions of Auclert, Rognlie and Straub
(2021) is a method to compute these Jacobians in a more efficient way. This method re-
lies on the assumption that agents have perfect foresight, but Auclert, Rognlie and Straub
(2020) shows how to compute the Jacobians in the model with deviations from FIRE at
almost no computational cost starting from the FIRE one. However, their method relies on
the assumption that the deviations from FIRE are orthogonal to the state variables of the
model. Moving forward I will then show how to compute Jacobians for the households
side in the Sticky HANK model in two ways. First by brute force, and then by leveraging
the method in Auclert, Rognlie and Straub (2020) and adapting it to the case in which the
deviations from FIRE are not orthogonal to the state variables.

Sticky dynamics away from the steady state. The brute force solution leverages the fol-
lowing idea. Consider an individual ¢ with wealth a at time 0. Assume that this individual
is going to keep their wealth constant over time. Then when a shock is announced to hit
the economy at time s, the probability that the individual will learn about it ata time 7 < s
is (1 — 6(a))f(a)”. Moreover, as long as the population of agents with the same asset level
is large enough, then this probability coincides with the fraction of agents with the same
asset level that updated their information set. In this case, across that asset level, at time
7 the economy reacts as if the shock hitting at time s has size (1 — 6(a))0(a)" of the origi-
nal shock. The brute force algorithm then consists of computing the Jacobian as described
in the previous part but rescaling the size of the shock to the correct level at each asset
level: h — h(1—6(a))f(a)”. This method relies on the approximation that while agents are
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moving in the distribution, they move in such a way that

Zaj maj Q) 0(0’.7)

0(ay) ~
Zaj majaak

; (28)

where mg; 4, is the mass of agents that have wealth a; at time 7—1 and ay, at time 7. In other
words, the probability of updating at time 7 for an agent with wealth a;, is the weighted
average of the updating probability of agents with wealth a; at time 7 — 1. I discuss the
validity of this approximation in appendix B. In any case this method is computationally
expensive and I propose a different way of obtaining the Jacobians in the Sticky HANK
model. The brute force method will then serve as a benchmark to test the validity of the
new method.

The methodology builds on the one in Auclert, Rognlie and Straub (2020) to compute
Jacobians with deviations from FIRE. It needs however to be adapted to the case in which
the degree of stickiness 6 is endogenous and determined by the distribution. I begin by
reassuming the method used in Auclert, Rognlie and Straub (2020). This follows two as-
sumptions. The first one is that it is possible to partition the population at any time ¢ in
two groups: those who have updated their information set at least once in a period 7 < ¢,
thus learning about the shock and those who have not. This assumption is met also in this
case. The second one is that the updating probability is orthogonal to idiosyncratic shocks
and constant over the population and time. This assumption is not met in this case. If it

were, then it would be possible to derive the sticky expectations Jacobian as

jo,i _ (1 _ 9) Z HTjO’i’T. (29)
7=0

In the context of this paper, a similar relationship can be derived, but this involved an
additional step to deal with the endogenous evolving stickyness as I explain below.

FIRE Jacobian manipulation

Start by considering a representative household with time-varying stickiness parame-
ter 6;. I define the probability that this agent has not updated their information set in any
period up to T as

1 ifr=-1

P‘r: T . (30)
Hak 1f’7’20
k=0

Then the probability of learning about about a shock at time 7 < ¢ for the households can
be derived as:

0= (1—0,)P_4.

Then, consider an economy populated by a continuum of representative households,
this can be divided at any point in time into two groups: those who have updated their
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information set at least once in a period 7 < t, thus learning about the shock and those
who have not.
Then the aggregate Jacobian describing the output sequence o response to input se-

quence ¢ can be written as

jo,i — Z ijo’i’T. (31)
7=0

The insights provided in appendix D.3 of Auclert, Rognlie and Straub (2020) still apply
and can be used to derive the following relationship between the sticky information Jaco-
bian and the Jacobian of the model with perfect foresight. Specifically, it is still true that a
household learning at date 7 about a shock at time s to input ¢ will have the same response
as a household learning at time 0 about the same shock at time s — 7 to input 3, shifted by
7 periods. That is

T = T = = T (32)

I also maintain the assumption that all households are aware of the shock when it hits at

0,1,T 0,1,5

time s so that if 7 > s then J, ;»" = J,;"". With this I can rewrite equation (31) as

s—1 o0
T = DT+ DT G
7=0

T=5

The term ) >7 _ ¢, can be simplified as follows. First, note that
ZT = I'r—1 — Pﬂ (34)

since
PT—l - PT = Ir—1 — (PT—l ' 97’) = PT_I(I - 97—) (35)

Then, the sum can be written as

S:i(PT—l_P’T):(ZPT—1>_<ZP’T>' (36)

Then noticing that the first sum is equal to the second sum shifted by one period I have

S=P, 1+ (i Pn> - (i Pn> =Py, (37)

Therefore
S=Pi1=)Y L (38)
Then (33) becomes
s—1
Tih =Y T+ T Peca. (39)
7=0
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Now one can write
tzt?sz_%ozs - 1+Z€ jo,z,7+£‘7t020’ (40)
and applying (32) I have
T = TP +5§:mﬂ; T, @)
Notice now that shifting (39) by 1 period in both ¢ and s I have
:7t0—7i1,s—1 = Sie T Z17—5 \ + T les 11 5—2- (42)

which is almost the same expression as the first two terms in (41), except for ¢, in
place of /; and P;s_ in place of P,_;. Itis easy to apply the tranformation Ps_1 = Ps_26,_1,
but the relationship betwen ¢, and ¢, can be derived as follows

1—60:41)0-
lry1=(1=0,41)Pr = (1 —0,41)0,Pr_y = eT(l_‘gl). (43)
The term 11_27;? is time dependent and prevents me from directly expressing Jto; in

terms of J7,”", ,_;. To overcome this, I approximate the term as

(1 - 97-0—1)97'

11— 97_ ~ 9571. (44)

With this I can write (41) as
T =T o 10sm1 + LT (45)

Now, noitce that for s = 0 then (39) becomes jt?(’)i = ‘Zf(’)i’o . Fort =0and s > 0 then
households react only if 7 = 0, so «700,5 =Ly . Combining these insights, and realizing
that 7;”; W0 — jt?j’FI since it just the full-information Jacobian, I can write

N f) ootfs1 + EOZ?;i’FI t>0,5>0
T = goih s=0 (46)

LT t=0,5>0
which is a nice formulation since it relates the sticky information Jacobian to the full in-
formation Jacobian and the time-varying stickyness parameter and can thus be computed
efficiently as long as the path of 6; is known. However, the path of 6, is endogenously

determined by the distribution of wealth in the economy and in essence this is a fixed
point problem. To solve it I can just use the following insight. At the aggregate level, the
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stickiness of the economy in steady state is given by

o / 0(a)dD(a). (47)

I can then treat the path of ; as any aggregate output and compute the Jacobian mapping
any shock to input i to the path of 6;, 7% under FIRE assumption. To compute the effect
of a shock to input i on the path of ; I can then use the following algorithm.

1. Guess an initial path for {6, }°.

0,:,FIRE
s

2. Starting from , compute jtesl using (46).

3. Apply (25) to obtain the change in 6; and add it to the steady state value to get a new
path {6;}!.

4. Check if ||{6;:}° — {6:}!]| < ¢, for an exogenously set tolerance level e.

5. Run until convergence.

The resulting path of {6;} can then be used to obtain the sticky information Jacobian
relating any output o to input ¢ by applying (46) to the appropriate FIRE Jacobian.
3.9 Calibration

I calibrate the model to a quarterly frequency. The steady state of interest is the one with
0 inflation which implies that nominal and real interest rates coincide. Table 3 reports the

value of the parameters used in the calibration.
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Table 3: Calibration

Parameter Description Value

Households

o Elasticiy of intertemporal substition 0.5

o) Firsch elasticity 0.5

¢ Disitulity of labor 1.0

Pe Persistence of idiosyncratic productivity shocks 0.92

sde Standard deviation of idiosyncratic productivity shocks 0.92

Ne Number of productivity states 11
Minimum asset level 0

a Maximum asset level 4000.0

Ng Number of asset grid points 250

v Sensitivity of stickiness to wealth 0.08

Firms

X Steady state TFP level 1.0

Kw Wage rigidity 0.16

Monetary

o Taylor rule coefficient 1.5

T Real interest rate 0.5%

Fiscal

G/Y Spending to GDP ratio 0.16

B Bond supply 5.6

Targeted

B Discount factor 0.95

3.10 Monetary policy

I now consider the implications of the model for monetary policy. As a useful reference
model, I also consider a representative agent (RANK) model, in which the only difference
is the household side of the model. Specifically, the representative household solves

o0 _
cl—e

maxlEg Z Ik
P 1—-0

s.t. Ct + At < (1 + ’f’t)Atfl + Zt.

(48)

The calibration for this model is also the same as in the HANK model, except for the
value of the discount factor  which is now set to 5 = 1/(1 + r). For consistency to the re-
mainder of the paper, I assume that the monetary authority actually shocks the beginning

of the period interest rate r®™¢. This will allow to handle valuation effects when adding
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dividends. This can be accommodated into the model by introducing a simple rule map-
ping the ex-ante to the ex-post interest rate

re =rate qfe>1
bl = (49)
rp=1r ift=0

I start in the FIRE framework and consider the response of aggregate output to a shock to
the real interest rate which deviates 1% from its steady state on impact and goes back to
the steady state with an exponentially declining weight of 0.7. As remarked by Auclert,
Rognlie and Straub (2021) it is useful to visualize the macro model as a Directed Acyclic
Graph (DAG). Since B and G are constant, given the fiscal rule 7" will simply adapt to
match the fiscal authority budget constraint. Also for the moment, I can focus on the real
side of the economy, given that steady state inflation is 0. Under these assumptions, the
DAG, which is common for both HANK and RANK is shown in figure 3. Given that

r
’,.ante r Z C
shock ramte Y
o goods mkt.
unknown Y clearing

Figure 3: DAG of the model for monetary shock
market clearing is 0, the DAG represents the following relationship in sequence space
Y =G +C(Z,r), (50)

where the notation C stresses that aggregate consumption and aggregate net of taxes
income are functions of sequences. Indeed also the ex-post interest rate and Z are func-
tions. Then in response to a shock to the real interest rate, differentiating (50) yields (since

G is constant)
dY = 7% dr + 792 dZ, (51)
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and by explicitly considering the dependence of the fiscal and ex-post interest rates
dY = g% dr + 97 (F4YdY + J#"dr), (52)

whit dr = (j "’Ta"tedrante). This Jacobians in (51) are what Auclert, Rognlie and Straub
(2024) call intertemporal marginal propensities to consume (iMPCs) and are of particular
interest since they are sufficient statistics for the response of aggregate output to a mone-
tary policy shock. This formulation is also useful to decompose the effect of the shock into
direct (via intertemporal substitution) and indirect (via income) effects. The left panel of
tigure 4 shows the IRFs of the HANK and RANK models. Within the proposed calibration,
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Figure 4: Monetary policy in the HANK and RANK

the finding is that under FIRE there difference in terms of aggregate response from RANK
to HANK is minimal. Indeed this is a well-known result in the literature, (Ahn et al., 2018).
While the aggregate response is similar, the decomposition into direct and indirect effects
in figure 5reveals that in HANK indirect effects, via income are much more important. In-
deed in the RANK model, marginal propensities to consume are zeros and therefore the
only channel is the direct one. Again, however, for a policymaker, interested only in the

aggregate response, the difference is minimal.

HANK RANK
0.05 — Total — Total
—— Direct 0.05 4 —— Direct
0.04 4 Indirect Indirect
0.03 1 0.04 4
0.02 4
0.03
0.01
0.00 4 0.02 4
—0.01
0.01
-0.024
—0.03 4 0.00

Figure 5: Decomposition

Now I consider the same shock in the case in which agents have sticky information. In
order to maintain a fair comparison I also consider a sticky version of the RANK model.

Absent assets heterogeneity, however, I set the stickiness in RANK to the steady state value
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Figure 6: Monetary policy in the HANK and RANK under sticky information

of the HANK model and constant for all agents. Then I apply the algorithm described in
section 3.8 to the iMPCs of the equation (51) to obtain the sticky information Jacobians.*
The right panel of figure 6 shows the IRFs of the HANK and RANK models under sticky
information. In the second case, although the RANK model displays some dampening, it
is only in the HANK version that the response does not peak on impact. When individuals

have sticky information, inequality matters.

4 Estimation

In this section I move to the estimation of the model. In order to do so I consider a slightly
different model, including a more realistic supply side, that could accomodate the impor-
tance of investements in the transmission of monetary policy, as pointed out in Auclert,
Rognlie and Straub (2024).

41 Model

Households

The household side is almost the same, but now it is assumed that households also
receive dividends from ownership of firms. Morevoer taxes and dividends follow an in-
cidence rule. Specifically I will assume that they are both proportional to the household
productivity. Their optimization problem is then

Cit,Qit

maxEq Z B (u(cir) — v(ng))
t=0

_ (53)
sit. cip+ai < (1 +7r)ai—1 + yir — 77 (eir) + ded(eir)

it 2> a

Firms The main difference is the introduction of capital into the economy. The firm side

“In the RANK case, since the stickiness is constant, there is no need to iterate, and the transformation in
(46) can be directly applied.
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is populated by a final good producer and a continuum of intermediate goods producers,
indexed by j. Intermediate producers have Cobb-Douglas production function

yjt = F(nje, kjr1) = nj; “k§_q, (54)

and face adjustment costs when choosing their capital stock. I follow Auclert, Rognlie

and Straub (2021) in setting quadratic adjustment costs

kit 1 kit — kji—1 ?
\I/k k k» _ — J — 1 — 5 . ’ 55
¢ (Kjt, kje—1) ki1 ( )+ 20€s ( kji—1 7 Y

with § the depreciation rate and ¢; the capital adjustment cost parameter, both positive.
Aggregate investment then evolves by

I = K — (1= 6) Ky + UF (Ky, Ki1) Kot (56)
Price setting of intermediate firms is also subject to quadratic adjustment costs,

w1
Uy (pjts pjt—1) = —12n log(p;i) — log(pji—1)]?, (57)

where p is the constant elasticity of substition of the final good producer and « is the
price adjustment cost parameter. The Phillips curve for aggregate inflation is then

we 1> L Yoo 4 mn). (58)

log(1+m) =k < - —
4 2 Fy(Ne K1) I+re Y

Dividends are given by output net of investements, the remuneration of labor and the
price adjustment costs, so that d; = Y; — I, — w; Ny — V) (P;, P,—1)Y;. The evolution of capital
is determined jointly with the Tobin’s Q

1 K, — Ki—q
=14t 2t 59
Q1 o Ko (59)
Yii W1

147 =« -

( t+1)Qt UK, Fl Ny, ) (60)
K I (K1 — K K
—(1—
Kt ( 5) * 2(56[ ( Kt > + Kt Qt+1

Fiscal and Monetary authority

The fiscal authority follows a similar rule as before, but now taxes are proportional to
labor so Tyw Ny = B + G. The taylor rule now includes also reaction to the output gap
it =1+ ¢xmy + ¢y (Vs — Yes) + €, and the Fisher equation reads 7y = (1 +44—1)/(1 + m).

Market Clearing
Asset market clearing is the same as before, but goods market clearing also includes
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investements and price adjustment costs, so that Y; = C, + I, + Gy + VY (P, P,_1)Y}.

4.2 Empirical IRFs

I estimate the model by matching model-implied IRFs to empirical ones. The causal shock
of interest is the estimated monetary policy shock from Aruoba and Drechsel (2022), which
builds on the Romer and Romer (2004) procedure but also uses Natural Language Process-
ing techniques. It computes the shock as changes in the Federal Funds Rate orthogonal to
all available FED forecasts and text-based time series.

To pin down the causal dynamic effect of this shock on macroeconomic aggregates,
I use a Bayesian Vector Autoregression (BVAR) model, following Caravello, McKay and
Wolf (2024). I target three outcomes: output, inflation, and the nominal interest rate, and
collect their empirical impulse responses over 25 quarters by stacking them into the vector
Y, with covariance matrix 3. Appendix D provides details on the computation of these
two objects.

To estimate the model, I proceed in two steps. First, I calibrate all parameters that are
not directly estimated, as shown in Table 3. Then, I estimate the following set of param-
eters: the degree of household inattention v, the coefficient of the Taylor rule reaction to
inflation ¢, the coefficient of the Taylor rule reaction to the output gap ¢,, the price ad-
justment cost parameter x, the wage rigidity parameter «,,, and the investment adjustment
cost parameter €;. Collecting these parameters in the vector ¥ = (v, ¢r, ¢y, K, kw, €1), an
approximate likelihood of the data T as a function of ¥ is given by:

. . ! .
p(T | @) o exp [—0.5 (r - r(ql)) »-1 (r - r(ql))] . 17)
The posterior for ¥ given the policy shock causal effect data Y is then:

o (X ¥)p(®)
p(w | 1) = B

Y

where:

p(Y) = /p(f | O)p(T)dW.

To trace out the posterior distribution, I use a Metropolis-Hastings algorithm described
in Appendix E. I estimate the model under both FIRE and sticky information and compare
the results in Figure 8, where the empirical IRFs are compared with the model-implied
IRFs.

The latter are obtained by simulating the model with parameter values set to the pos-
terior mode. The sticky model is extremely accurate in matching the path of the nominal
interest rate. It captures the hump shape in the output gap response but fails to match the
peak of the response and overestimates the inflation response. There are two main reasons
for this:
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Figure 7: Empirical IRFs

First, the stickiness is calibrated exogenously and depends on the steady-state wealth
distribution. The calibrated value of stickiness, around 0.42, is far below the estimates
of other studies, which typically find values close to 0.9 (Auclert, Rognlie and Straub,
2021) (Caravello, McKay and Wolf, 2024). One could hypothesize that, given increasing
inequality in recent decades, stickiness may also increase, leading to time-varying effects
of monetary policy. However, in this setting, since the model is stationary, shocks can only
have temporary effects on the wealth distribution itself, translating into temporary effects
on stickiness. Exploring this further in future research could be worthwhile.

Second, the lack of frictions, especially on the supply side, could play a role. This omis-
sion is deliberate to focus on the role of information frictions, but as argued, for example,
in Auclert, Rognlie and Straub (2021), the investment channel plays a crucial role in the
transmission mechanism of boundedly rational HANK models. A more rigid investment
side could help match the peak of the output gap response.

The FIRE model, on the other hand, while able to match inflation and interest rates to
a good extent, fails completely in terms of the output gap response. I report the prior and

posterior values of the estimated parameters in Tables 4 and 5.

Table 4: Prior and Posterior Distributions for the HANK FIRE model

Parameter Prior Dist. Mode Mean Median 5 percent 95 percent
O Gamma(1.5,0.5) 1.400 1.350 1.377 1.192 1.482
by Gamma(0.5,0.5) 0.490 0.477  0.476 0.427 0.539
Kp Gamma(0.1,0.1) 0.150 0.144 0.144 0.091 0.208
Kuw Gamma(0.1,0.1) 0.120 0.105  0.104 0.056 0.166
€1 Gamma(4, 2) 1.700 1.686 1.685 1.634 1.750

Monetary policy in the estimated model

As the only difference between the two models is the presence of sticky information, I
explore its effect on the transmission of monetary policy shocks. To quantify this, I com-
pute the on-impact and cumulative differences in the output gap response between the
two models. The cumulative difference is given by S {Y;/“* " mstickuy /fytextrmFIREY _
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Table 5: Prior and Posterior Distributions for the HANK sticky model

Parameter Prior Dist. Mode Mean Median 5 percent 95 percent
o Gamma(1.5,0.5) 1.060 1.069  1.067 1.041 1.103
by Gamma(0.5,0.5) 0.610 0.621  0.618 0.594 0.658
Kp Gamma(0.1,0.1) 0.050 0.053  0.050 0.027 0.088
Kw Gamma(0.1,0.1) 0.270 0.275  0.274 0.246 0.311
€r Gamma(4, 2) 1.850 1.288  1.391 0.415 1.934

and equals —2.18%. The on-impact difference is given by Y “""""stikv jytextrmFIRE _ 1

and equals 0.14%. The size of the shock is set to the average of the estimated monetary
policy shock of Aruoba and Drechsel (2022), modeled as an AR(1) process with a persis-
tence of 0.9. In Figure 8, I show the model-implied IRFs for output, inflation, and interest

rate in response to the described shock.
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Figure 8: Monetary policy in the estimated model

The right panel is perhaps the most surprising, as it shows that under FIRE, a positive
shock does not increase the nominal interest rate. Given the Taylor rule specified above, the
general equilibrium effects of a decrease in inflation and output more than compensate for
the direct effect of the shock. This is not the case in the sticky version of the model, where
the output and especially inflation responses are dampened. This leads to an increase in

the nominal interest rate and to the documented hump shapes.

5 Conclusion

This paper advances the understanding of monetary policy transmission by introducing
wealth-dependent information stickiness into a HANK model. Through empirical analysis
of survey data, I provide evidence of wealth-dependent stickiness, which is incorporated
into the model using a novel computational methodology that extends the sequence-space
methods introduced by Auclert, Rognlie and Straub (2021). My approach modifies the
computation of the General Equilibrium Jacobians to account for the endogenous evolu-
tion of the wealth distribution and state-dependent updating probabilities.

I use this methodology to efficiently solve the model, simulate the economy’s response
to monetary policy shocks, and estimate the model by matching impulse responses. The

results reveal that wealth-dependent stickiness significantly alters the transmission mech-
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anisms of monetary policy. Specifically, ignoring heterogeneity in information updat-
ing—as in representative agent models with uniform stickiness—leads to an underesti-
mation of both the magnitude and the delay of the peak response to monetary shocks.
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A  Survey Data

I report either a description of the variable or the question asked to the respondents, for
the surveys used in the analysis.

Survey of Professional Forecasters: Querterly expectations of inflation (measured by the
GNP/GDP price index and, alternatively, the CPI).

Michigan Survey of Consumers: By about what percent do you expect prices to go (up/down)
on the average, during the next 12 months?
Livingston Survey: Give the current-month (June and December) forecasts [of the CPI] and then
base [your] six-month and 12-month forecasts on [your] current-month predictions.

¢ Gini Index for the US. SIPOVGINIUSA from the FRED at yearly frequency. To ob-
tain the index for each quarter or semester I linearly interpolate between available

observations.

When dealing with individual forecasts I had to deal with missing values. In doing
so I followed the procedure of the survey as reported in the technical note. Specifically
NaNs and “don’t know if up or down” responses were dropped from the sample. How-
ever “don’t know how much up” and “don’t know how much down” were imputed by the
mean of the other responses. In the orignial procedure the imputation is done by matching
the distribution of the other responses. However since the sample mean would be un-
affected and higher order moments are not used in this analysis, I opted for the simpler

approach.

B Brute Force Method approximation

What is required for the approximation to be accurate is that agents move across the dis-
tribution in such a way that the probability of ending up in wealth level a is almost the
same for agents starting at wealth levels a — A and a + A, for any A. In order for this to be
the case, two conditions should be met, the first is that the mapping from current to future
wealth levels must be almost linear. The second that the wealth space being unbounded.
To assess wheter the first condition is met, in figure 9 I plot net savings as a function of
current wealth for different income levels, in the steady state.

As can be seen the relationship is almost linear, except for extremely low level of
wealth. Zooming in on the low wealth region one can see that the nonlinearity is really
accentuated only for the bottom 0.1% of the distribution. The second condition is clearly
not met since the grid is discretized between a minimum and maximum asset level. Then
especially at the boundaries the approximation will be less accurate. However given the
shape of the function mapping wealth to probability of stickiness, for high values of assets
the function is almost flat, so the error will be small. For example at the 95% level one
has § = 0.517 while at the maximum asset level § = 0.515, a difderence of 0.2 percentage
points. At the bottom of the distribution the error will be larger. I can only argue that the
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Figure 9: Net Savings as a Function of Assets for different Income Levels

proportion of agents in this region is small, as can be seen in figure 10. The only excpetion
being the lower bound in which in steady state there is a mass of 1.4% of agents.
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Figure 10: Wealth Distribution

C Phillips Curve

The union £ faces the following maximization problem at time ¢

00 2
WuitanNut+n 1 Waitsh

5 1 (Corn)(1 = ) P )N, = o (et ),
Pt t+h (0 ut+h—1

(61)

which depends on the marginal utililies of aggregate quantities, which ignores the ef-

fect of the union decision on the distribution.” The union sets wage monopolistically, con-
sidering the demand curve of the labor packer

Ny = <> A (62)

Under these assumptions the first order condition reads

5In this I follow Wolf (2021), Mckay and Wolf (2022) and Guerreiro (2023). Using the approach in Auclert,
Rognlie and Straub (2024) of considerng an average utility keeping track of these distributional consequences
would provide little quantitative difference at a great computational cost.
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and can be linearized to
T =Ky (07 e+ ¢ R — (G — Tt — M) + B, (64)

where k,, = 1ev'(N)N.

D Empirical Impulse Responses

The estimation follows Caravello, McKay and Wolf (2024) and the empirical data is taken
from the paper reprodcution files. The reduced-form VAR is given by

p
y=Y Awii+e, (65)
(=1

where y; is the vector of observables, A, is the and e¢; is the vector of residuals. The
Wold innovations 7; are then obtainied by C' ~le, where C is the Cholesky factor of the co-
variance matrix of the residuals 3. = C'Z,,C". For the estimation the values in the Aruoba
and Drechsel (2022) series that are missing, are imputed to be 0 and monthly data are ag-
gregated by averaging. In addition to the monetary policy shock, the VAR includes the
following variables:

* Output Gap. Row data is log output per capita, (FRED series A939RX0Q048SBEA).
Detrending is achieved by a regression of the variable al date ¢ 4 8 quarters ahed on

the four most recent values at date ¢, as recommended by Hamilton (2018).
¢ Nominal Interest Rate. Measured by the FRED series (FEDFUNDS).
¢ Inlfation. Measured by the log-difference in GDP deflator (FRED series GDPDEEF).

The shock is ordered first, the number of lags is set to 2 and a linear time trend is in-
cluded. The estimation is done in a Bayesian setting, so to obtain a number of draws
N = for the impulse responses, the apporach followed is that in Arias, Rubio-Ramirez and
Waggoner (2018) of using a uniform-normal-inverse-Wishart posterior over the othogonal
reduced-form parametrization. The N draws are then used to compute the Y by stacking
the posterior mode of the impulse responses Y; i =1,..., N. The covariance matrix X is

computed by the following steps. First the following object is constructed

=3 (1.-7) (1.~ 1), (66)

i=1
then to accomodate this matrix for small sample size, the matrix is trasnformed accord-
ing to the following criteria:
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¢ Diagonal Elements. The diagonal elements are preserved.

¢ Off-Diagonal Elements less than H horizons apart. The off-diagonal element cor-
responding to lags ¢ and j are scaled by the factor

=] .
1-— l,j=1,... . H
< H ) 7] M )

¢ Off-Diagonal Elements more than H horizons apart. Covariances for horizons

more than H apart are set to 0.

E Posterior Distribution

I use a standard Random Walk Metropolis Hastings algorithm, with a multivariate nor-
mal for the proposal distribution. The variance-covariance matrix is initially assumed to
be equal to the prior variance-covariance matrix, scaled by a constant. I use the first N,
draws to estimate the variance- covariance matrix of the proposal distribution, updating
the proposal variance-covariance matrix to the observed variance-covariance matrix of pa-
rameters in the first N, draws. Once updated, I sample another N, + N, draws, burn
the first N, and keep the last [N, draws, which I use as our posterior distribution. I set
N, = N, = 100000, N, = 50000. The acceptance rates are 22.17% and 24.19% for the sticky
and FIRE model respectively.
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